FremyCompany commited on
Commit
35891ec
1 Parent(s): 413bd0f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -73,9 +73,9 @@ pip install -U sentence-transformers
73
  Then you can use the model like this:
74
  ```python
75
  from sentence_transformers import SentenceTransformer
76
- sentences = ["Cat scratch injury", "Cat scratch disease", "Bartonellosis"]
77
 
78
- model = SentenceTransformer('FremyCompany/BioLORD-2023-M')
79
  embeddings = model.encode(sentences)
80
  print(embeddings)
81
  ```
@@ -94,10 +94,10 @@ def mean_pooling(model_output, attention_mask):
94
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
95
 
96
  # Sentences we want sentence embeddings for
97
- sentences = ["Cat scratch injury", "Cat scratch disease", "Bartonellosis"]
98
 
99
  # Load model from HuggingFace Hub
100
- tokenizer = AutoTokenizer.from_pretrained('FremyCompany/BioLORD-2023-M')
101
  model = AutoModel.from_pretrained('FremyCompany/BioLORD-2023-M')
102
 
103
  # Tokenize sentences
 
73
  Then you can use the model like this:
74
  ```python
75
  from sentence_transformers import SentenceTransformer
76
+ sentences = ["wond door kattenscrab", "kattenkrabziekte", "bartonellosis"]
77
 
78
+ model = SentenceTransformer('FremyCompany/BioLORD-2023-M-Dutch-InContext-v1 ')
79
  embeddings = model.encode(sentences)
80
  print(embeddings)
81
  ```
 
94
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
95
 
96
  # Sentences we want sentence embeddings for
97
+ sentences = ["wond door kattenscrab", "kattenkrabziekte", "bartonellosis"]
98
 
99
  # Load model from HuggingFace Hub
100
+ tokenizer = AutoTokenizer.from_pretrained('FremyCompany/BioLORD-2023-M-Dutch-InContext-v1 ')
101
  model = AutoModel.from_pretrained('FremyCompany/BioLORD-2023-M')
102
 
103
  # Tokenize sentences