from sagemaker.huggingface import HuggingFace ROLE = ? # hyperparameters, which are passed into the training job hyperparameters = { 'epochs': 1, 'per_device_train_batch_size': 32, 'do_train': True, 'model_name_or_path': 'distilbert-base-uncased', 'output_dir': '/opt/ml/checkpoints' } # create the Estimator huggingface_estimator = HuggingFace( entry_point='train.py', source_dir='.', instance_type='local', # 'ml.p3.2xlarge', instance_count=1, checkpoint_s3_uri=f's3://{sess.default_bucket()}/checkpoints', use_spot_instances=True, max_wait=3600, # This should be equal to or greater than max_run in seconds' max_run=1000, role=ROLE, transformers_version='4.4', pytorch_version='1.6', py_version='py36', hyperparameters=hyperparameters, ) huggingface_estimator.fit( { 'train': 's3://sagemaker-us-east-1-558105141721/samples/datasets/imdb/train', 'test': 's3://sagemaker-us-east-1-558105141721/samples/datasets/imdb/test' } )