start sagemaker code
Browse files- README.md +2 -0
- download_model.py +7 -0
- requirements.txt +7 -0
- start_training.py +38 -0
- train.py +161 -0
- train.sh +0 -0
README.md
CHANGED
@@ -2,3 +2,5 @@
|
|
2 |
# Wiki-VAE
|
3 |
|
4 |
A Transformer-VAE trained on all the sentences in wikipedia.
|
|
|
|
|
|
2 |
# Wiki-VAE
|
3 |
|
4 |
A Transformer-VAE trained on all the sentences in wikipedia.
|
5 |
+
|
6 |
+
Training is done on AWS SageMaker.
|
download_model.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sagemaker.s3 import S3Downloader
|
2 |
+
|
3 |
+
S3Downloader.download(
|
4 |
+
s3_uri=huggingface_estimator.model_data, # s3 uri where the trained model is located
|
5 |
+
local_path='.', # local path where *.targ.gz is saved
|
6 |
+
sagemaker_session=sess # sagemaker session used for training the model
|
7 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wheel
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
datasets
|
5 |
+
tokenizers
|
6 |
+
sagemaker
|
7 |
+
scikit-learn
|
start_training.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sagemaker.huggingface import HuggingFace
|
2 |
+
|
3 |
+
ROLE = ?
|
4 |
+
|
5 |
+
# hyperparameters, which are passed into the training job
|
6 |
+
hyperparameters = {
|
7 |
+
'epochs': 1,
|
8 |
+
'per_device_train_batch_size': 32,
|
9 |
+
'do_train': True,
|
10 |
+
'model_name_or_path': 'distilbert-base-uncased',
|
11 |
+
'output_dir': '/opt/ml/checkpoints'
|
12 |
+
}
|
13 |
+
|
14 |
+
|
15 |
+
# create the Estimator
|
16 |
+
huggingface_estimator = HuggingFace(
|
17 |
+
entry_point='train.py',
|
18 |
+
source_dir='.',
|
19 |
+
instance_type='local', # 'ml.p3.2xlarge',
|
20 |
+
instance_count=1,
|
21 |
+
checkpoint_s3_uri=f's3://{sess.default_bucket()}/checkpoints',
|
22 |
+
use_spot_instances=True,
|
23 |
+
max_wait=3600, # This should be equal to or greater than max_run in seconds'
|
24 |
+
max_run=1000,
|
25 |
+
role=ROLE,
|
26 |
+
transformers_version='4.4',
|
27 |
+
pytorch_version='1.6',
|
28 |
+
py_version='py36',
|
29 |
+
hyperparameters=hyperparameters,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
huggingface_estimator.fit(
|
34 |
+
{
|
35 |
+
'train': 's3://sagemaker-us-east-1-558105141721/samples/datasets/imdb/train',
|
36 |
+
'test': 's3://sagemaker-us-east-1-558105141721/samples/datasets/imdb/test'
|
37 |
+
}
|
38 |
+
)
|
train.py
CHANGED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import sys
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
import inspect
|
6 |
+
from typing import Optional, Any
|
7 |
+
from dataclasses import dataclass, field, make_dataclass
|
8 |
+
from transformers import Trainer, TrainingArguments, AutoTokenizer, HfArgumentParser
|
9 |
+
from datasets import load_from_disk
|
10 |
+
|
11 |
+
from funnel_vae.src.funnel_vae import FunnelVae
|
12 |
+
from funnel_vae.src.config import FunnelVaeConfig
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class BaseArgs:
|
17 |
+
# hyperparameters sent by the client are passed as command-line arguments to the script.
|
18 |
+
model_name: str
|
19 |
+
epochs: int = 3
|
20 |
+
per_device_train_batch_size: int = 32
|
21 |
+
per_device_eval_batch_size: int = 64
|
22 |
+
warmup_steps: int = 500
|
23 |
+
learning_rate: str = 5e-5
|
24 |
+
|
25 |
+
output_data_dir: str = os.environ["SM_OUTPUT_DATA_DIR"]
|
26 |
+
model_dir: str = os.environ["SM_MODEL_DIR"]
|
27 |
+
n_gpus: str = os.environ["SM_NUM_GPUS"]
|
28 |
+
training_dir: str = os.environ["SM_CHANNEL_TRAIN"]
|
29 |
+
test_dir: str = os.environ["SM_CHANNEL_TEST"]
|
30 |
+
|
31 |
+
|
32 |
+
# ModelArguments
|
33 |
+
fields = [
|
34 |
+
(
|
35 |
+
'tokenizer_name', Optional[str], field(
|
36 |
+
default='t5-base', metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
37 |
+
)
|
38 |
+
),
|
39 |
+
] + [
|
40 |
+
(
|
41 |
+
name, type(info.default) if info.default is not None else Any, field(
|
42 |
+
default=info.default, metadata={"help": f"Has default {info.default}, see FunnelVaeConfig docstring for more info."}
|
43 |
+
)
|
44 |
+
)
|
45 |
+
# get relevent model arguments with defaults
|
46 |
+
for name, info in inspect.signature(FunnelVaeConfig.__init__).parameters.items() if name not in ['self', 'kwargs', 'use_extra_logs', 'cache_dir']
|
47 |
+
]
|
48 |
+
# ensure starting with non-default args
|
49 |
+
start_f = list(filter(lambda field: field[2].default is None, fields))
|
50 |
+
end_f = list(filter(lambda field: field[2].default is not None, fields))
|
51 |
+
ModelArguments = make_dataclass('ModelArguments', start_f + end_f)
|
52 |
+
|
53 |
+
|
54 |
+
@dataclass
|
55 |
+
class DataArguments:
|
56 |
+
dataset_name: Optional[str] = field(
|
57 |
+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
58 |
+
)
|
59 |
+
text_column: Optional[str] = field(default=None, metadata={"help": "Use this dataset column as 'text'."})
|
60 |
+
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
61 |
+
validation_file: Optional[str] = field(
|
62 |
+
default=None,
|
63 |
+
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
64 |
+
)
|
65 |
+
overwrite_cache: bool = field(default=False, metadata={"help": "Overwrite the cached training and evaluation sets"})
|
66 |
+
preprocessing_num_workers: Optional[int] = field(
|
67 |
+
default=None,
|
68 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
69 |
+
)
|
70 |
+
mlm_probability: float = field(
|
71 |
+
default=0.0, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
|
72 |
+
)
|
73 |
+
validation_name: str = field(
|
74 |
+
default="validation",
|
75 |
+
metadata={"help": "Name of the set to run evaluation on."},
|
76 |
+
)
|
77 |
+
|
78 |
+
def __post_init__(self):
|
79 |
+
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
80 |
+
raise ValueError("Need either a dataset name or a training/validation file.")
|
81 |
+
else:
|
82 |
+
if self.train_file is not None:
|
83 |
+
extension = self.train_file.split(".")[-1]
|
84 |
+
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file."
|
85 |
+
if self.validation_file is not None:
|
86 |
+
extension = self.validation_file.split(".")[-1]
|
87 |
+
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file."
|
88 |
+
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
parser = HfArgumentParser((BaseArgs, ModelArguments, DataArguments, TrainingArguments))
|
92 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
93 |
+
|
94 |
+
parser = argparse.ArgumentParser()
|
95 |
+
|
96 |
+
args, _ = parser.parse_known_args()
|
97 |
+
|
98 |
+
# Set up logging
|
99 |
+
logger = logging.getLogger(__name__)
|
100 |
+
|
101 |
+
logging.basicConfig(
|
102 |
+
level=logging.getLevelName("INFO"),
|
103 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
104 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
105 |
+
)
|
106 |
+
|
107 |
+
# load datasets
|
108 |
+
train_dataset = load_from_disk(args.training_dir)
|
109 |
+
test_dataset = load_from_disk(args.test_dir)
|
110 |
+
|
111 |
+
logger.info(f" loaded train_dataset length is: {len(train_dataset)}")
|
112 |
+
logger.info(f" loaded test_dataset length is: {len(test_dataset)}")
|
113 |
+
|
114 |
+
# init model
|
115 |
+
config = FunnelVaeConfig.from_pretrained(**model_args.__dict__)
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, use_fast_tokenizer=True)
|
117 |
+
|
118 |
+
vocab_size = len(tokenizer)
|
119 |
+
config.funnel.vocab_size = vocab_size
|
120 |
+
config.t5.vocab_size = vocab_size
|
121 |
+
config.vocab_size = vocab_size
|
122 |
+
model = FunnelVae(config)
|
123 |
+
|
124 |
+
model = FunnelVae.from_pretrained()
|
125 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
126 |
+
|
127 |
+
# define training args
|
128 |
+
training_args = TrainingArguments(
|
129 |
+
output_dir=args.model_dir,
|
130 |
+
num_train_epochs=args.epochs,
|
131 |
+
per_device_train_batch_size=args.train_batch_size,
|
132 |
+
per_device_eval_batch_size=args.eval_batch_size,
|
133 |
+
warmup_steps=args.warmup_steps,
|
134 |
+
evaluation_strategy="epoch",
|
135 |
+
logging_dir=f"{args.output_data_dir}/logs",
|
136 |
+
learning_rate=float(args.learning_rate),
|
137 |
+
)
|
138 |
+
|
139 |
+
# create Trainer instance
|
140 |
+
trainer = Trainer(
|
141 |
+
model=model,
|
142 |
+
args=training_args,
|
143 |
+
train_dataset=train_dataset,
|
144 |
+
eval_dataset=test_dataset,
|
145 |
+
tokenizer=tokenizer,
|
146 |
+
)
|
147 |
+
|
148 |
+
# train model
|
149 |
+
trainer.train()
|
150 |
+
|
151 |
+
# evaluate model
|
152 |
+
eval_result = trainer.evaluate(eval_dataset=test_dataset)
|
153 |
+
|
154 |
+
# writes eval result to file which can be accessed later in s3 ouput
|
155 |
+
with open(os.path.join(args.output_data_dir, "eval_results.txt"), "w") as writer:
|
156 |
+
print(f"***** Eval results *****")
|
157 |
+
for key, value in sorted(eval_result.items()):
|
158 |
+
writer.write(f"{key} = {value}\n")
|
159 |
+
|
160 |
+
# Saves the model to s3
|
161 |
+
trainer.save_model(args.model_dir)
|
train.sh
ADDED
File without changes
|