--- language: - en license: apache-2.0 tags: - text-generation base_model: JackFram/llama-160m datasets: - ehartford/wizard_vicuna_70k_unfiltered - totally-not-an-llm/EverythingLM-data-V3 - Open-Orca/SlimOrca-Dedup - databricks/databricks-dolly-15k - THUDM/webglm-qa widget: - text: '<|im_start|>system You are a helpful assistant, who answers with empathy.<|im_end|> <|im_start|>user Got a question for you!<|im_end|> <|im_start|>assistant Sure! What''s it?<|im_end|> <|im_start|>user Why do you love cats so much!? 🐈<|im_end|> <|im_start|>assistant' - text: '<|im_start|>system You are a helpful assistant who answers user''s questions with empathy.<|im_end|> <|im_start|>user Who is Mona Lisa?<|im_end|> <|im_start|>assistant' - text: '<|im_start|>system You are a helpful assistant who provides concise responses.<|im_end|> <|im_start|>user Heya!<|im_end|> <|im_start|>assistant Hi! How may I help you today?<|im_end|> <|im_start|>user I need to build a simple website. Where should I start learning about web development?<|im_end|> <|im_start|>assistant' - text: '<|im_start|>user Invited some friends to come home today. Give me some ideas for games to play with them!<|im_end|> <|im_start|>assistant' - text: '<|im_start|>system You are a helpful assistant who answers user''s questions with details and curiosity.<|im_end|> <|im_start|>user What are some potential applications for quantum computing?<|im_end|> <|im_start|>assistant' - text: '<|im_start|>system You are a helpful assistant who gives creative responses.<|im_end|> <|im_start|>user Write the specs of a game about mages in a fantasy world.<|im_end|> <|im_start|>assistant' - text: '<|im_start|>system You are a helpful assistant who answers user''s questions with details.<|im_end|> <|im_start|>user Tell me about the pros and cons of social media.<|im_end|> <|im_start|>assistant' - text: '<|im_start|>system You are a helpful assistant who answers user''s questions with confidence.<|im_end|> <|im_start|>user What is a dog?<|im_end|> <|im_start|>assistant A dog is a four-legged, domesticated animal that is a member of the class Mammalia, which includes all mammals. Dogs are known for their loyalty, playfulness, and ability to be trained for various tasks. They are also used for hunting, herding, and as service animals.<|im_end|> <|im_start|>user What is the color of an apple?<|im_end|> <|im_start|>assistant' inference: parameters: max_new_tokens: 250 penalty_alpha: 0.5 top_k: 4 repetition_penalty: 1.01 model-index: - name: Llama-160M-Chat-v1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 24.74 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 35.29 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 26.13 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 44.16 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 51.3 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard --- # A Llama Chat Model of 160M Parameters - Base model: [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) - Datasets: - [ehartford/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered) - [totally-not-an-llm/EverythingLM-data-V3](https://huggingface.co/datasets/totally-not-an-llm/EverythingLM-data-V3) - [Open-Orca/SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup) - [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) - [THUDM/webglm-qa](https://huggingface.co/datasets/THUDM/webglm-qa) - Availability in other ML formats: - GGUF: [Felladrin/gguf-Llama-160M-Chat-v1](https://huggingface.co/Felladrin/gguf-Llama-160M-Chat-v1) - ONNX: [Felladrin/onnx-Llama-160M-Chat-v1](https://huggingface.co/Felladrin/onnx-Llama-160M-Chat-v1) - MLC: [Felladrin/mlc-q4f16-Llama-160M-Chat-v1](https://huggingface.co/Felladrin/mlc-q4f16-Llama-160M-Chat-v1) - MLX: [mlx-community/Llama-160M-Chat-v1-4bit-mlx](https://huggingface.co/mlx-community/Llama-160M-Chat-v1-4bit-mlx) ## Recommended Prompt Format ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {user_message}<|im_end|> <|im_start|>assistant ``` ## Recommended Inference Parameters ```yml penalty_alpha: 0.5 top_k: 4 repetition_penalty: 1.01 ``` ## Usage Example ```python from transformers import pipeline generate = pipeline("text-generation", "Felladrin/Llama-160M-Chat-v1") messages = [ { "role": "system", "content": "You are a helpful assistant who answers user's questions with details and curiosity.", }, { "role": "user", "content": "What are some potential applications for quantum computing?", }, ] prompt = generate.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) output = generate( prompt, max_new_tokens=1024, penalty_alpha=0.5, top_k=4, repetition_penalty=1.01, ) print(output[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Felladrin__Llama-160M-Chat-v1) | Metric |Value| |---------------------------------|----:| |Avg. |30.27| |AI2 Reasoning Challenge (25-Shot)|24.74| |HellaSwag (10-Shot) |35.29| |MMLU (5-Shot) |26.13| |TruthfulQA (0-shot) |44.16| |Winogrande (5-shot) |51.30| |GSM8k (5-shot) | 0.00|