Add model card (#1)
Browse files- Add model card (f247fc095632281c64003d69bb00f0e39c99402d)
- Update README.md (49b58bfee24fa4b081e368bf9b565b4b97e3e1e9)
- Update README.md (a74492d043bceee97d15b6d0efe13e6d73ed8a8c)
- Update README.md (5be68b819292d496197de150dcfa07329d15088f)
Co-authored-by: Marissa Gerchick <[email protected]>
README.md
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- multilingual
|
4 |
+
- en
|
5 |
+
- ro
|
6 |
+
license: cc-by-nc-4.0
|
7 |
+
---
|
8 |
+
|
9 |
+
# xlm-mlm-enro-1024
|
10 |
+
|
11 |
+
# Table of Contents
|
12 |
+
|
13 |
+
1. [Model Details](#model-details)
|
14 |
+
2. [Uses](#uses)
|
15 |
+
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
|
16 |
+
4. [Training](#training)
|
17 |
+
5. [Evaluation](#evaluation)
|
18 |
+
6. [Environmental Impact](#environmental-impact)
|
19 |
+
7. [Technical Specifications](#technical-specifications)
|
20 |
+
8. [Citation](#citation)
|
21 |
+
9. [Model Card Authors](#model-card-authors)
|
22 |
+
10. [How To Get Started With the Model](#how-to-get-started-with-the-model)
|
23 |
+
|
24 |
+
|
25 |
+
# Model Details
|
26 |
+
|
27 |
+
The XLM model was proposed in [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample, Alexis Conneau. xlm-mlm-enro-1024 is a transformer pretrained using a masked language modeling (MLM) objective for English-Romanian. This model uses language embeddings to specify the language used at inference. See the [Hugging Face Multilingual Models for Inference docs](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings) for further details.
|
28 |
+
|
29 |
+
## Model Description
|
30 |
+
|
31 |
+
- **Developed by:** Guillaume Lample, Alexis Conneau, see [associated paper](https://arxiv.org/abs/1901.07291)
|
32 |
+
- **Model type:** Language model
|
33 |
+
- **Language(s) (NLP):** English-Romanian
|
34 |
+
- **License:** license: cc-by-nc-4.0
|
35 |
+
- **Related Models:** [xlm-clm-enfr-1024](https://huggingface.co/xlm-clm-enfr-1024), [xlm-clm-ende-1024](https://huggingface.co/xlm-clm-ende-1024), [xlm-mlm-enfr-1024](https://huggingface.co/xlm-mlm-enfr-1024), [xlm-mlm-ende-1024](https://huggingface.co/xlm-mlm-ende-1024)
|
36 |
+
- **Resources for more information:**
|
37 |
+
- [Associated paper](https://arxiv.org/abs/1901.07291)
|
38 |
+
- [GitHub Repo](https://github.com/facebookresearch/XLM)
|
39 |
+
- [Hugging Face Multilingual Models for Inference docs](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings)
|
40 |
+
|
41 |
+
# Uses
|
42 |
+
|
43 |
+
## Direct Use
|
44 |
+
|
45 |
+
The model is a language model. The model can be used for masked language modeling.
|
46 |
+
|
47 |
+
## Downstream Use
|
48 |
+
|
49 |
+
To learn more about this task and potential downstream uses, see the Hugging Face [fill mask docs](https://huggingface.co/tasks/fill-mask) and the [Hugging Face Multilingual Models for Inference](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings) docs.
|
50 |
+
|
51 |
+
## Out-of-Scope Use
|
52 |
+
|
53 |
+
The model should not be used to intentionally create hostile or alienating environments for people.
|
54 |
+
|
55 |
+
# Bias, Risks, and Limitations
|
56 |
+
|
57 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
|
58 |
+
|
59 |
+
## Recommendations
|
60 |
+
|
61 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
|
62 |
+
|
63 |
+
# Training
|
64 |
+
|
65 |
+
The model developers write:
|
66 |
+
|
67 |
+
> In all experiments, we use a Transformer architecture with 1024 hidden units, 8 heads, GELU activations (Hendrycks and Gimpel, 2016), a dropout rate of 0.1 and learned positional embeddings. We train our models with the Adam op- timizer (Kingma and Ba, 2014), a linear warm- up (Vaswani et al., 2017) and learning rates varying from 10^−4 to 5.10^−4.
|
68 |
+
|
69 |
+
See the [associated paper](https://arxiv.org/pdf/1901.07291.pdf) for links, citations, and further details on the training data and training procedure.
|
70 |
+
|
71 |
+
The model developers also write that:
|
72 |
+
|
73 |
+
> If you use these models, you should use the same data preprocessing / BPE codes to preprocess your data.
|
74 |
+
|
75 |
+
See the associated [GitHub Repo](https://github.com/facebookresearch/XLM#ii-cross-lingual-language-model-pretraining-xlm) for further details.
|
76 |
+
|
77 |
+
# Evaluation
|
78 |
+
|
79 |
+
## Testing Data, Factors & Metrics
|
80 |
+
|
81 |
+
The model developers evaluated the model on the [WMT'16 English-Romanian](https://huggingface.co/datasets/wmt16) dataset using the [BLEU metric](https://huggingface.co/spaces/evaluate-metric/bleu). See the [associated paper](https://arxiv.org/pdf/1901.07291.pdf) for further details on the testing data, factors and metrics.
|
82 |
+
|
83 |
+
## Results
|
84 |
+
|
85 |
+
For xlm-mlm-enro-1024 results, see Tables 1-3 of the [associated paper](https://arxiv.org/pdf/1901.07291.pdf).
|
86 |
+
|
87 |
+
# Environmental Impact
|
88 |
+
|
89 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
90 |
+
|
91 |
+
- **Hardware Type:** More information needed
|
92 |
+
- **Hours used:** More information needed
|
93 |
+
- **Cloud Provider:** More information needed
|
94 |
+
- **Compute Region:** More information needed
|
95 |
+
- **Carbon Emitted:** More information needed
|
96 |
+
|
97 |
+
# Technical Specifications
|
98 |
+
|
99 |
+
The model developers write:
|
100 |
+
|
101 |
+
> We implement all our models in PyTorch (Paszke et al., 2017), and train them on 64 Volta GPUs for the language modeling tasks, and 8 GPUs for the MT tasks. We use float16 operations to speed up training and to reduce the memory usage of our models.
|
102 |
+
|
103 |
+
See the [associated paper](https://arxiv.org/pdf/1901.07291.pdf) for further details.
|
104 |
+
|
105 |
+
# Citation
|
106 |
+
|
107 |
+
**BibTeX:**
|
108 |
+
|
109 |
+
```bibtex
|
110 |
+
@article{lample2019cross,
|
111 |
+
title={Cross-lingual language model pretraining},
|
112 |
+
author={Lample, Guillaume and Conneau, Alexis},
|
113 |
+
journal={arXiv preprint arXiv:1901.07291},
|
114 |
+
year={2019}
|
115 |
+
}
|
116 |
+
```
|
117 |
+
|
118 |
+
**APA:**
|
119 |
+
- Lample, G., & Conneau, A. (2019). Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291.
|
120 |
+
|
121 |
+
# Model Card Authors
|
122 |
+
|
123 |
+
This model card was written by the team at Hugging Face.
|
124 |
+
|
125 |
+
# How to Get Started with the Model
|
126 |
+
|
127 |
+
More information needed. This model uses language embeddings to specify the language used at inference. See the [Hugging Face Multilingual Models for Inference docs](https://huggingface.co/docs/transformers/v4.20.1/en/multilingual#xlm-with-language-embeddings) for further details.
|