Delete handler.py
Browse files- handler.py +0 -34
handler.py
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
from typing import Dict, List, Any
|
2 |
-
from optimum.onnxruntime import ORTModelForSequenceClassification
|
3 |
-
from transformers import pipeline, AutoTokenizer
|
4 |
-
|
5 |
-
|
6 |
-
class EndpointHandler():
|
7 |
-
def __init__(self, path=""):
|
8 |
-
# load the optimized model
|
9 |
-
model = ORTModelForSequenceClassification.from_pretrained(path)
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained(path)
|
11 |
-
# create inference pipeline
|
12 |
-
self.pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
13 |
-
|
14 |
-
|
15 |
-
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
16 |
-
"""
|
17 |
-
Args:
|
18 |
-
data (:obj:):
|
19 |
-
includes the input data and the parameters for the inference.
|
20 |
-
Return:
|
21 |
-
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
|
22 |
-
- "label": A string representing what the label/class is. There can be multiple labels.
|
23 |
-
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
24 |
-
"""
|
25 |
-
inputs = data.pop("inputs", data)
|
26 |
-
parameters = data.pop("parameters", None)
|
27 |
-
|
28 |
-
# pass inputs with all kwargs in data
|
29 |
-
if parameters is not None:
|
30 |
-
prediction = self.pipeline(inputs, **parameters)
|
31 |
-
else:
|
32 |
-
prediction = self.pipeline(inputs)
|
33 |
-
# postprocess the prediction
|
34 |
-
return prediction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|