Ezekiel-Zhao commited on
Commit
3806568
1 Parent(s): afca546

End of training

Browse files
README.md CHANGED
@@ -16,14 +16,14 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.6801
20
- - Answer: {'precision': 0.6998916576381365, 'recall': 0.7985166872682324, 'f1': 0.745958429561201, 'number': 809}
21
- - Header: {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119}
22
- - Question: {'precision': 0.7674216027874564, 'recall': 0.8272300469483568, 'f1': 0.7962042476276546, 'number': 1065}
23
- - Overall Precision: 0.7123
24
- - Overall Recall: 0.7852
25
- - Overall F1: 0.7470
26
- - Overall Accuracy: 0.8102
27
 
28
  ## Model description
29
 
@@ -52,28 +52,28 @@ The following hyperparameters were used during training:
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
- |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
- | 1.8269 | 1.0 | 10 | 1.5983 | {'precision': 0.0274949083503055, 'recall': 0.03337453646477132, 'f1': 0.03015075376884422, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.10761154855643044, 'recall': 0.07699530516431925, 'f1': 0.08976464148877941, 'number': 1065} | 0.0625 | 0.0547 | 0.0583 | 0.3800 |
58
- | 1.4969 | 2.0 | 20 | 1.3148 | {'precision': 0.14439140811455847, 'recall': 0.14956736711990112, 'f1': 0.14693381906496664, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3501683501683502, 'recall': 0.39061032863849765, 'f1': 0.36928539724811366, 'number': 1065} | 0.2651 | 0.2694 | 0.2672 | 0.5643 |
59
- | 1.1839 | 3.0 | 30 | 1.0447 | {'precision': 0.40492957746478875, 'recall': 0.4264524103831891, 'f1': 0.41541240216736913, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5461672473867596, 'recall': 0.5887323943661972, 'f1': 0.5666516041572526, 'number': 1065} | 0.486 | 0.4877 | 0.4869 | 0.6655 |
60
- | 0.9261 | 4.0 | 40 | 0.8452 | {'precision': 0.5813715455475946, 'recall': 0.7021013597033374, 'f1': 0.6360582306830906, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6362068965517241, 'recall': 0.6929577464788732, 'f1': 0.6633707865168539, 'number': 1065} | 0.6035 | 0.6553 | 0.6283 | 0.7335 |
61
- | 0.7296 | 5.0 | 50 | 0.7494 | {'precision': 0.6223849372384938, 'recall': 0.7354758961681088, 'f1': 0.6742209631728047, 'number': 809} | {'precision': 0.16666666666666666, 'recall': 0.06722689075630252, 'f1': 0.09580838323353293, 'number': 119} | {'precision': 0.6773356401384083, 'recall': 0.7352112676056338, 'f1': 0.7050877982890591, 'number': 1065} | 0.6417 | 0.6954 | 0.6675 | 0.7676 |
62
- | 0.6079 | 6.0 | 60 | 0.6998 | {'precision': 0.629399585921325, 'recall': 0.7515451174289246, 'f1': 0.6850704225352113, 'number': 809} | {'precision': 0.12222222222222222, 'recall': 0.09243697478991597, 'f1': 0.10526315789473684, 'number': 119} | {'precision': 0.6630686198920586, 'recall': 0.8075117370892019, 'f1': 0.7281964436917865, 'number': 1065} | 0.6286 | 0.7421 | 0.6806 | 0.7881 |
63
- | 0.5267 | 7.0 | 70 | 0.6732 | {'precision': 0.6366427840327533, 'recall': 0.7688504326328801, 'f1': 0.696528555431131, 'number': 809} | {'precision': 0.20652173913043478, 'recall': 0.15966386554621848, 'f1': 0.1800947867298578, 'number': 119} | {'precision': 0.7107296137339055, 'recall': 0.7774647887323943, 'f1': 0.7426008968609865, 'number': 1065} | 0.6576 | 0.7371 | 0.6951 | 0.7864 |
64
- | 0.4762 | 8.0 | 80 | 0.6606 | {'precision': 0.6577319587628866, 'recall': 0.788627935723115, 'f1': 0.71725688589095, 'number': 809} | {'precision': 0.25663716814159293, 'recall': 0.24369747899159663, 'f1': 0.25, 'number': 119} | {'precision': 0.731665228645384, 'recall': 0.7962441314553991, 'f1': 0.762589928057554, 'number': 1065} | 0.6757 | 0.7602 | 0.7155 | 0.7936 |
65
- | 0.4175 | 9.0 | 90 | 0.6566 | {'precision': 0.6815761448349308, 'recall': 0.7911001236093943, 'f1': 0.7322654462242563, 'number': 809} | {'precision': 0.25892857142857145, 'recall': 0.24369747899159663, 'f1': 0.2510822510822511, 'number': 119} | {'precision': 0.7513089005235603, 'recall': 0.8084507042253521, 'f1': 0.7788331071913162, 'number': 1065} | 0.6964 | 0.7677 | 0.7303 | 0.8021 |
66
- | 0.374 | 10.0 | 100 | 0.6592 | {'precision': 0.6956521739130435, 'recall': 0.7911001236093943, 'f1': 0.7403123192596877, 'number': 809} | {'precision': 0.319672131147541, 'recall': 0.3277310924369748, 'f1': 0.32365145228215775, 'number': 119} | {'precision': 0.7637931034482759, 'recall': 0.831924882629108, 'f1': 0.7964044943820225, 'number': 1065} | 0.7107 | 0.7852 | 0.7461 | 0.8070 |
67
- | 0.3406 | 11.0 | 110 | 0.6666 | {'precision': 0.7, 'recall': 0.796044499381953, 'f1': 0.7449392712550607, 'number': 809} | {'precision': 0.3305084745762712, 'recall': 0.3277310924369748, 'f1': 0.32911392405063294, 'number': 119} | {'precision': 0.7656387665198238, 'recall': 0.815962441314554, 'f1': 0.79, 'number': 1065} | 0.7142 | 0.7787 | 0.7451 | 0.8071 |
68
- | 0.332 | 12.0 | 120 | 0.6704 | {'precision': 0.6941798941798942, 'recall': 0.8108776266996292, 'f1': 0.7480045610034207, 'number': 809} | {'precision': 0.3220338983050847, 'recall': 0.31932773109243695, 'f1': 0.32067510548523204, 'number': 119} | {'precision': 0.7660311958405546, 'recall': 0.8300469483568075, 'f1': 0.7967552951780081, 'number': 1065} | 0.7118 | 0.7918 | 0.7496 | 0.8078 |
69
- | 0.3061 | 13.0 | 130 | 0.6787 | {'precision': 0.6908108108108109, 'recall': 0.7898640296662547, 'f1': 0.7370242214532873, 'number': 809} | {'precision': 0.3253968253968254, 'recall': 0.3445378151260504, 'f1': 0.33469387755102037, 'number': 119} | {'precision': 0.7669305189094108, 'recall': 0.8187793427230047, 'f1': 0.7920072661217076, 'number': 1065} | 0.7093 | 0.7787 | 0.7424 | 0.8091 |
70
- | 0.2879 | 14.0 | 140 | 0.6781 | {'precision': 0.6951871657754011, 'recall': 0.8034610630407911, 'f1': 0.7454128440366973, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.33613445378151263, 'f1': 0.33472803347280333, 'number': 119} | {'precision': 0.7746478873239436, 'recall': 0.8262910798122066, 'f1': 0.7996365288505224, 'number': 1065} | 0.7166 | 0.7878 | 0.7505 | 0.8099 |
71
- | 0.2831 | 15.0 | 150 | 0.6801 | {'precision': 0.6998916576381365, 'recall': 0.7985166872682324, 'f1': 0.745958429561201, 'number': 809} | {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119} | {'precision': 0.7674216027874564, 'recall': 0.8272300469483568, 'f1': 0.7962042476276546, 'number': 1065} | 0.7123 | 0.7852 | 0.7470 | 0.8102 |
72
 
73
 
74
  ### Framework versions
75
 
76
  - Transformers 4.31.0
77
  - Pytorch 2.0.1+cu118
78
- - Datasets 2.14.2
79
  - Tokenizers 0.13.3
 
16
 
17
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.6689
20
+ - Answer: {'precision': 0.7029063509149623, 'recall': 0.8071693448702101, 'f1': 0.7514384349827388, 'number': 809}
21
+ - Header: {'precision': 0.3412698412698413, 'recall': 0.36134453781512604, 'f1': 0.35102040816326535, 'number': 119}
22
+ - Question: {'precision': 0.7777777777777778, 'recall': 0.828169014084507, 'f1': 0.8021828103683492, 'number': 1065}
23
+ - Overall Precision: 0.7209
24
+ - Overall Recall: 0.7918
25
+ - Overall F1: 0.7547
26
+ - Overall Accuracy: 0.8158
27
 
28
  ## Model description
29
 
 
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.8306 | 1.0 | 10 | 1.6060 | {'precision': 0.026582278481012658, 'recall': 0.02595797280593325, 'f1': 0.026266416510318948, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.21528861154446177, 'recall': 0.1295774647887324, 'f1': 0.16178194607268465, 'number': 1065} | 0.1111 | 0.0798 | 0.0929 | 0.3733 |
58
+ | 1.4787 | 2.0 | 20 | 1.2612 | {'precision': 0.20019627085377822, 'recall': 0.2521631644004944, 'f1': 0.22319474835886213, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.419710544452102, 'recall': 0.571830985915493, 'f1': 0.4841017488076311, 'number': 1065} | 0.3291 | 0.4079 | 0.3643 | 0.5976 |
59
+ | 1.1115 | 3.0 | 30 | 0.9517 | {'precision': 0.466, 'recall': 0.5760197775030902, 'f1': 0.5152017689331123, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5697115384615384, 'recall': 0.6676056338028169, 'f1': 0.6147859922178989, 'number': 1065} | 0.5201 | 0.5906 | 0.5531 | 0.6834 |
60
+ | 0.8531 | 4.0 | 40 | 0.8275 | {'precision': 0.5730337078651685, 'recall': 0.7564894932014833, 'f1': 0.65210442194992, 'number': 809} | {'precision': 0.06521739130434782, 'recall': 0.025210084033613446, 'f1': 0.03636363636363636, 'number': 119} | {'precision': 0.6735751295336787, 'recall': 0.7323943661971831, 'f1': 0.7017543859649122, 'number': 1065} | 0.6140 | 0.6999 | 0.6542 | 0.7393 |
61
+ | 0.7059 | 5.0 | 50 | 0.7345 | {'precision': 0.6333687566418703, 'recall': 0.7367119901112484, 'f1': 0.6811428571428572, 'number': 809} | {'precision': 0.2, 'recall': 0.14285714285714285, 'f1': 0.16666666666666666, 'number': 119} | {'precision': 0.6966386554621848, 'recall': 0.7784037558685446, 'f1': 0.7352549889135255, 'number': 1065} | 0.6507 | 0.7235 | 0.6852 | 0.7712 |
62
+ | 0.5949 | 6.0 | 60 | 0.6931 | {'precision': 0.6376050420168067, 'recall': 0.7503090234857849, 'f1': 0.689381033503691, 'number': 809} | {'precision': 0.20430107526881722, 'recall': 0.15966386554621848, 'f1': 0.1792452830188679, 'number': 119} | {'precision': 0.6931637519872814, 'recall': 0.8187793427230047, 'f1': 0.7507533362031856, 'number': 1065} | 0.6505 | 0.7516 | 0.6974 | 0.7836 |
63
+ | 0.5143 | 7.0 | 70 | 0.6674 | {'precision': 0.6688172043010753, 'recall': 0.7688504326328801, 'f1': 0.7153536515238643, 'number': 809} | {'precision': 0.23478260869565218, 'recall': 0.226890756302521, 'f1': 0.23076923076923078, 'number': 119} | {'precision': 0.7146341463414634, 'recall': 0.8253521126760563, 'f1': 0.7660130718954249, 'number': 1065} | 0.6716 | 0.7667 | 0.7160 | 0.7933 |
64
+ | 0.4641 | 8.0 | 80 | 0.6507 | {'precision': 0.667016806722689, 'recall': 0.7849196538936959, 'f1': 0.7211811470755252, 'number': 809} | {'precision': 0.3142857142857143, 'recall': 0.2773109243697479, 'f1': 0.29464285714285715, 'number': 119} | {'precision': 0.7347280334728034, 'recall': 0.8244131455399061, 'f1': 0.7769911504424779, 'number': 1065} | 0.6865 | 0.7757 | 0.7284 | 0.8029 |
65
+ | 0.4063 | 9.0 | 90 | 0.6671 | {'precision': 0.6574074074074074, 'recall': 0.7898640296662547, 'f1': 0.7175743964065132, 'number': 809} | {'precision': 0.3114754098360656, 'recall': 0.31932773109243695, 'f1': 0.3153526970954357, 'number': 119} | {'precision': 0.747008547008547, 'recall': 0.8206572769953052, 'f1': 0.782102908277405, 'number': 1065} | 0.6851 | 0.7782 | 0.7287 | 0.8017 |
66
+ | 0.3643 | 10.0 | 100 | 0.6603 | {'precision': 0.6851063829787234, 'recall': 0.796044499381953, 'f1': 0.7364208118925099, 'number': 809} | {'precision': 0.3669724770642202, 'recall': 0.33613445378151263, 'f1': 0.3508771929824562, 'number': 119} | {'precision': 0.7674825174825175, 'recall': 0.8244131455399061, 'f1': 0.7949298325033951, 'number': 1065} | 0.7123 | 0.7837 | 0.7463 | 0.8069 |
67
+ | 0.3331 | 11.0 | 110 | 0.6691 | {'precision': 0.6928879310344828, 'recall': 0.7948084054388134, 'f1': 0.740356937248129, 'number': 809} | {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119} | {'precision': 0.7666666666666667, 'recall': 0.8206572769953052, 'f1': 0.7927437641723357, 'number': 1065} | 0.7088 | 0.7802 | 0.7428 | 0.8071 |
68
+ | 0.3193 | 12.0 | 120 | 0.6597 | {'precision': 0.6932059447983014, 'recall': 0.8071693448702101, 'f1': 0.7458595088520845, 'number': 809} | {'precision': 0.3416666666666667, 'recall': 0.3445378151260504, 'f1': 0.34309623430962344, 'number': 119} | {'precision': 0.7721739130434783, 'recall': 0.8338028169014085, 'f1': 0.801805869074492, 'number': 1065} | 0.7152 | 0.7938 | 0.7524 | 0.8112 |
69
+ | 0.2972 | 13.0 | 130 | 0.6679 | {'precision': 0.7011866235167206, 'recall': 0.8034610630407911, 'f1': 0.7488479262672811, 'number': 809} | {'precision': 0.344, 'recall': 0.36134453781512604, 'f1': 0.3524590163934426, 'number': 119} | {'precision': 0.7716814159292036, 'recall': 0.8187793427230047, 'f1': 0.7945330296127562, 'number': 1065} | 0.7172 | 0.7852 | 0.7497 | 0.8145 |
70
+ | 0.2833 | 14.0 | 140 | 0.6684 | {'precision': 0.703023758099352, 'recall': 0.8046971569839307, 'f1': 0.7504322766570604, 'number': 809} | {'precision': 0.3412698412698413, 'recall': 0.36134453781512604, 'f1': 0.35102040816326535, 'number': 119} | {'precision': 0.7769973661106233, 'recall': 0.8309859154929577, 'f1': 0.8030852994555354, 'number': 1065} | 0.7207 | 0.7923 | 0.7548 | 0.8163 |
71
+ | 0.2765 | 15.0 | 150 | 0.6689 | {'precision': 0.7029063509149623, 'recall': 0.8071693448702101, 'f1': 0.7514384349827388, 'number': 809} | {'precision': 0.3412698412698413, 'recall': 0.36134453781512604, 'f1': 0.35102040816326535, 'number': 119} | {'precision': 0.7777777777777778, 'recall': 0.828169014084507, 'f1': 0.8021828103683492, 'number': 1065} | 0.7209 | 0.7918 | 0.7547 | 0.8158 |
72
 
73
 
74
  ### Framework versions
75
 
76
  - Transformers 4.31.0
77
  - Pytorch 2.0.1+cu118
78
+ - Datasets 2.14.3
79
  - Tokenizers 0.13.3
logs/events.out.tfevents.1691115886.555594e3d69c.1834.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:48efe3484b6a283250e67411aa80c861469c3ac519aa8d6e35e88b85d94a60b2
3
- size 13408
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6ca6e904ea55d1587a0b401fcf6c3a9d83b6982f8c7d90dc1edc3bd819e9956
3
+ size 14423