legolasyiu
commited on
Commit
•
8e98822
1
Parent(s):
63142c8
Update README.md
Browse files
README.md
CHANGED
@@ -11,7 +11,7 @@ tags:
|
|
11 |
- trl
|
12 |
---
|
13 |
|
14 |
-
# Athena-
|
15 |
|
16 |
Supervised fine tuned (sft unsloth) for coding with EpistemeAI coding dataset.
|
17 |
|
@@ -49,7 +49,7 @@ import torch
|
|
49 |
from transformers import pipeline
|
50 |
pipe = pipeline(
|
51 |
"text-generation",
|
52 |
-
model="EpistemeAI/Athena-
|
53 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
54 |
device="cuda", # replace with "mps" to run on a Mac device
|
55 |
)
|
@@ -70,7 +70,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
70 |
import torch
|
71 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
72 |
model = AutoModelForCausalLM.from_pretrained(
|
73 |
-
"EpistemeAI/Athena-
|
74 |
device_map="auto",
|
75 |
torch_dtype=torch.bfloat16,
|
76 |
)
|
@@ -104,7 +104,7 @@ You can also use `float32` if you skip the dtype, but no precision increase will
|
|
104 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
105 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
106 |
model = AutoModelForCausalLM.from_pretrained(
|
107 |
-
"EpistemeAI/Athena-
|
108 |
device_map="auto",
|
109 |
)
|
110 |
input_text = "Write me a poem about Machine Learning."
|
@@ -135,7 +135,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
135 |
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
136 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
137 |
model = AutoModelForCausalLM.from_pretrained(
|
138 |
-
"EpistemeAI/Athena-
|
139 |
quantization_config=quantization_config,
|
140 |
)
|
141 |
input_text = "Write me a poem about Machine Learning."
|
@@ -155,7 +155,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
155 |
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
156 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
157 |
model = AutoModelForCausalLM.from_pretrained(
|
158 |
-
"EpistemeAI/Athena-
|
159 |
quantization_config=quantization_config,
|
160 |
)
|
161 |
input_text = "Write me a poem about Machine Learning."
|
@@ -185,7 +185,7 @@ import torch
|
|
185 |
torch.set_float32_matmul_precision("high")
|
186 |
# load the model + tokenizer
|
187 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
188 |
-
model = Gemma2ForCausalLM.from_pretrained("EpistemeAI/Athena-
|
189 |
model.to("cuda")
|
190 |
# apply the torch compile transformation
|
191 |
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
|
|
11 |
- trl
|
12 |
---
|
13 |
|
14 |
+
# Athena-codegemma-2-2b-lt for coding
|
15 |
|
16 |
Supervised fine tuned (sft unsloth) for coding with EpistemeAI coding dataset.
|
17 |
|
|
|
49 |
from transformers import pipeline
|
50 |
pipe = pipeline(
|
51 |
"text-generation",
|
52 |
+
model="EpistemeAI/Athena-codegemma-2-2b-it",
|
53 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
54 |
device="cuda", # replace with "mps" to run on a Mac device
|
55 |
)
|
|
|
70 |
import torch
|
71 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
72 |
model = AutoModelForCausalLM.from_pretrained(
|
73 |
+
"EpistemeAI/Athena-codegemma-2-2b-it",
|
74 |
device_map="auto",
|
75 |
torch_dtype=torch.bfloat16,
|
76 |
)
|
|
|
104 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
105 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
106 |
model = AutoModelForCausalLM.from_pretrained(
|
107 |
+
"EpistemeAI/Athena-codegemma-2-2b-it",
|
108 |
device_map="auto",
|
109 |
)
|
110 |
input_text = "Write me a poem about Machine Learning."
|
|
|
135 |
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
136 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
137 |
model = AutoModelForCausalLM.from_pretrained(
|
138 |
+
"EpistemeAI/Athena-codegemma-2-2b-it",
|
139 |
quantization_config=quantization_config,
|
140 |
)
|
141 |
input_text = "Write me a poem about Machine Learning."
|
|
|
155 |
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
156 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
157 |
model = AutoModelForCausalLM.from_pretrained(
|
158 |
+
"EpistemeAI/Athena-codegemma-2-2b-it",
|
159 |
quantization_config=quantization_config,
|
160 |
)
|
161 |
input_text = "Write me a poem about Machine Learning."
|
|
|
185 |
torch.set_float32_matmul_precision("high")
|
186 |
# load the model + tokenizer
|
187 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
188 |
+
model = Gemma2ForCausalLM.from_pretrained("EpistemeAI/Athena-codegemma-2-2b-it", torch_dtype=torch.bfloat16)
|
189 |
model.to("cuda")
|
190 |
# apply the torch compile transformation
|
191 |
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|