--- license: mit pipeline_tag: text-generation tags: - ONNX - DML - ONNXRuntime - phi3 - nlp - conversational - custom_code inference: false language: - en --- # EmbeddedLLM/Phi-3-mini-4k-instruct-062024 ONNX ## Model Summary This model is an ONNX-optimized version of [microsoft/Phi-3-mini-4k-instruct (June 2024)](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct), designed to provide accelerated inference on a variety of hardware using ONNX Runtime(CPU and DirectML). DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning, providing GPU acceleration for a wide range of supported hardware and drivers, including AMD, Intel, NVIDIA, and Qualcomm GPUs. ## ONNX Models Here are some of the optimized configurations we have added: - **ONNX model for int4 DirectML:** ONNX model for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ. ## Usage ### Installation and Setup To use the EmbeddedLLM/Phi-3-mini-4k-instruct-062024 ONNX model on Windows with DirectML, follow these steps: 1. **Create and activate a Conda environment:** ```sh conda create -n onnx python=3.10 conda activate onnx ``` 2. **Install Git LFS:** ```sh winget install -e --id GitHub.GitLFS ``` 3. **Install Hugging Face CLI:** ```sh pip install huggingface-hub[cli] ``` 4. **Download the model:** ```sh huggingface-cli download EmbeddedLLM/Phi-3-mini-4k-instruct-062024-onnx --include="onnx/directml/Phi-3-mini-4k-instruct-062024-int4/*" --local-dir .\Phi-3-mini-4k-instruct-062024-int4 ``` 5. **Install necessary Python packages:** ```sh pip install numpy==1.26.4 pip install onnxruntime-directml pip install --pre onnxruntime-genai-directml==0.3.0 ``` 6. **Install Visual Studio 2015 runtime:** ```sh conda install conda-forge::vs2015_runtime ``` 7. **Download the example script:** ```sh Invoke-WebRequest -Uri "https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi3-qa.py" -OutFile "phi3-qa.py" ``` 8. **Run the example script:** ```sh python phi3-qa.py -m .\Phi-3-mini-4k-instruct-062024-int4 ``` ### Hardware Requirements **Minimum Configuration:** - **Windows:** DirectX 12-capable GPU (AMD/Nvidia) - **CPU:** x86_64 / ARM64 **Tested Configurations:** - **GPU:** AMD Ryzen 8000 Series iGPU (DirectML) - **CPU:** AMD Ryzen CPU ## Model Description - **Developed by:** Microsoft - **Model type:** ONNX - **Language(s) (NLP):** Python, C, C++ - **License:** Apache License Version 2.0 - **Model Description:** This model is a conversion of the Phi-3-mini-4k-instruct-062024 for ONNX Runtime inference, optimized for DirectML.