--- license: mit pipeline_tag: text-generation tags: - ONNX - DML - ONNXRuntime - phi3 - nlp - conversational - custom_code inference: false language: - en --- # EmbeddedLLM/Phi-3-mini-4k-instruct-062024-int4-directml ## Model Summary This model is an ONNX-optimized version of [microsoft/Phi-3-mini-4k-instruct (June 2024)](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct), designed to provide accelerated inference on a variety of hardware using ONNX Runtime(CPU and DirectML). DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning, providing GPU acceleration for a wide range of supported hardware and drivers, including AMD, Intel, NVIDIA, and Qualcomm GPUs. ## ONNX Models Here are some of the optimized configurations we have added: - **ONNX model for int4 DirectML:** ONNX model for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ. ### Hardware Requirements **Minimum Configuration:** - **Windows:** DirectX 12-capable GPU (AMD/Nvidia) - **CPU:** x86_64 / ARM64 **Tested Configurations:** - **GPU:** AMD Ryzen 8000 Series iGPU (DirectML) - **CPU:** AMD Ryzen CPU ## Model Description - **Developed by:** Microsoft - **Model type:** ONNX - **Language(s) (NLP):** Python, C, C++ - **License:** Apache License Version 2.0 - **Model Description:** This model is a conversion of the Phi-3-mini-4k-instruct-062024 for ONNX Runtime inference, optimized for DirectML. ## Performance Metrics ### DirectML We measured the performance of DirectML on AMD Ryzen 9 7940HS /w Radeon 78 | Prompt Length | Generation Length | Average Throughput (tps) | |---------------------------|-------------------|-----------------------------| | 128 | 128 | - | | 128 | 256 | - | | 128 | 512 | - | | 128 | 1024 | - | | 256 | 128 | - | | 256 | 256 | - | | 256 | 512 | - | | 256 | 1024 | - | | 512 | 128 | - | | 512 | 256 | - | | 512 | 512 | - | | 512 | 1024 | - | | 1024 | 128 | - | | 1024 | 256 | - | | 1024 | 512 | - | | 1024 | 1024 | - |