File size: 2,110 Bytes
01b5826 21d944d 01b5826 e8b5dfc 01b5826 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
pipeline_tag: text-generation
tags:
- ONNX
- DML
- ONNXRuntime
- phi3
- nlp
- conversational
- custom_code
inference: false
language:
- en
---
# EmbeddedLLM/Phi-3-mini-4k-instruct-062024-int4-onnx-directml
## Model Summary
This model is an ONNX-optimized version of [microsoft/Phi-3-mini-4k-instruct (June 2024)](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct), designed to provide accelerated inference on a variety of hardware using ONNX Runtime(CPU and DirectML).
DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning, providing GPU acceleration for a wide range of supported hardware and drivers, including AMD, Intel, NVIDIA, and Qualcomm GPUs.
## ONNX Models
Here are some of the optimized configurations we have added:
- **ONNX model for int4 DirectML:** ONNX model for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ.
### Hardware Requirements
**Minimum Configuration:**
- **Windows:** DirectX 12-capable GPU (AMD/Nvidia)
- **CPU:** x86_64 / ARM64
**Tested Configurations:**
- **GPU:** AMD Ryzen 8000 Series iGPU (DirectML)
- **CPU:** AMD Ryzen CPU
## Model Description
- **Developed by:** Microsoft
- **Model type:** ONNX
- **Language(s) (NLP):** Python, C, C++
- **License:** Apache License Version 2.0
- **Model Description:** This model is a conversion of the Phi-3-mini-4k-instruct-062024 for ONNX Runtime inference, optimized for DirectML.
## Performance Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
### DirectML
We measured the performance of DirectML on AMD Ryzen 9 7940HS /w Radeon 78
| Prompt Length | Generation Length | Average Throughput (tps) |
|---------------------------|-------------------|-----------------------------|
| 128 | 128 | - |
| 128 | 256 | - |
| 128 | 512 | - |
| 128 | 1024 | - |
| 256 | 128 | - |
| 256 | 256 | - |
| 256 | 512 | - |
| 256 | 1024 | - |
| 512 | 128 | - |
| 512 | 256 | - |
| 512 | 512 | - |
| 512 | 1024 | - |
| 1024 | 128 | - |
| 1024 | 256 | - |
| 1024 | 512 | - |
| 1024 | 1024 | - | |