Demo code for GPT-NEO 2.7B
Browse files
demo.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Wed Mar 29 16:01:44 2023
|
4 |
+
|
5 |
+
Source: https://huggingface.co/EleutherAI/gpt-neo-2.7B
|
6 |
+
|
7 |
+
GPT-Neo 2.7B - a transformer model designed using EleutherAI's replication of the
|
8 |
+
GPT-3 architecture. The model is available on HuggingFace. Although it can be used
|
9 |
+
for different tasks, the model is best at what it was pretrained for, which is
|
10 |
+
generating texts from a prompt.
|
11 |
+
|
12 |
+
The task in this script is text generation.
|
13 |
+
|
14 |
+
There are also a 1.3B and 6B versions.
|
15 |
+
|
16 |
+
"""
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from transformers import AutoTokenizer, GPTNeoForCausalLM
|
20 |
+
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
|
22 |
+
model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-2.7B")
|
23 |
+
|
24 |
+
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
25 |
+
outputs = model(**inputs, labels=inputs["input_ids"])
|
26 |
+
|
27 |
+
input_ids = inputs["input_ids"]
|
28 |
+
|
29 |
+
gen_tokens = model.generate(
|
30 |
+
input_ids,
|
31 |
+
do_sample=True,
|
32 |
+
temperature=0.9,
|
33 |
+
max_length=100,
|
34 |
+
)
|
35 |
+
|
36 |
+
gen_text = tokenizer.batch_decode(gen_tokens)[0]
|
37 |
+
|
38 |
+
print("=========================================================")
|
39 |
+
print(gen_text)
|