import numpy as np import networkx as nx from networkx.utils import UnionFind from typing import Optional import torch from torch import Tensor from torch_sparse import SparseTensor from scipy.sparse import csr_matrix from math import pi as PI import torch.nn.functional as F def unique(sequence): seen = set() return [x for x in sequence if not (x in seen or seen.add(x))] def pos2key(pos): pos=pos.reshape(-1) key="{:08.4f}".format(pos[0])+'_'+"{:08.4f}".format(pos[1]) return key def get_angle(v1: Tensor, v2: Tensor): if v1.shape[1]==2: v1=F.pad(v1, (0, 1)) if v2.shape[1]==2: v2= F.pad(v2, (0, 1)) return torch.atan2( torch.cross(v1, v2, dim=1).norm(p=2, dim=1), (v1 * v2).sum(dim=1)) class GaussianSmearing(torch.nn.Module): def __init__(self, start=-PI, stop=PI, num_gaussians=12): super(GaussianSmearing, self).__init__() offset = torch.linspace(start, stop, num_gaussians) self.coeff = -0.5 / (offset[1] - offset[0]).item() ** 2 self.register_buffer("offset", offset) def forward(self, dist): dist = dist.view(-1, 1) - self.offset.view(1, -1) return torch.exp(self.coeff * torch.pow(dist, 2)) def triplets(edge_index, num_nodes): row, col = edge_index value = torch.arange(row.size(0), device=row.device) adj_t = SparseTensor(row=row, col=col, value=value, sparse_sizes=(num_nodes, num_nodes)) adj_t_row = adj_t[col] num_triplets = adj_t_row.set_value(None).sum(dim=1).to(torch.long) idx_i = row.repeat_interleave(num_triplets) idx_j = col.repeat_interleave(num_triplets) edx_1st = value.repeat_interleave(num_triplets) idx_k = adj_t_row.storage.col() edx_2nd = adj_t_row.storage.value() mask1 = (idx_i == idx_k) & (idx_j != idx_i) mask2 = (idx_i == idx_j) & (idx_j != idx_k) mask3 = (idx_j == idx_k) & (idx_i != idx_k) mask = ~(mask1 | mask2 | mask3) idx_i, idx_j, idx_k, edx_1st, edx_2nd = idx_i[mask], idx_j[mask], idx_k[mask], edx_1st[mask], edx_2nd[mask] num_triplets_real = torch.cumsum(num_triplets, dim=0) - torch.cumsum(~mask, dim=0)[torch.cumsum(num_triplets, dim=0)-1] return torch.stack([idx_i, idx_j, idx_k]), num_triplets_real.to(torch.long), edx_1st, edx_2nd if __name__ == '__main__': 1