DunnBC22 commited on
Commit
6000862
1 Parent(s): 81f0873

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ model-index:
7
+ - name: squeezebert-uncased-News_About_Gold
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # squeezebert-uncased-News_About_Gold
15
+
16
+ This model is a fine-tuned version of [squeezebert/squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.2643
19
+ - Accuracy: 0.9167
20
+ - Weighted f1: 0.9166
21
+ - Micro f1: 0.9167
22
+ - Macro f1: 0.8749
23
+ - Weighted recall: 0.9167
24
+ - Micro recall: 0.9167
25
+ - Macro recall: 0.8684
26
+ - Weighted precision: 0.9168
27
+ - Micro precision: 0.9167
28
+ - Macro precision: 0.8822
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 64
49
+ - eval_batch_size: 64
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 5
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
59
+ | 0.8756 | 1.0 | 133 | 0.4529 | 0.8699 | 0.8557 | 0.8699 | 0.6560 | 0.8699 | 0.8699 | 0.6727 | 0.8437 | 0.8699 | 0.6414 |
60
+ | 0.4097 | 2.0 | 266 | 0.3196 | 0.9026 | 0.8982 | 0.9026 | 0.7826 | 0.9026 | 0.9026 | 0.7635 | 0.9059 | 0.9026 | 0.8743 |
61
+ | 0.3147 | 3.0 | 399 | 0.2824 | 0.9115 | 0.9111 | 0.9115 | 0.8470 | 0.9115 | 0.9115 | 0.8319 | 0.9138 | 0.9115 | 0.8751 |
62
+ | 0.2685 | 4.0 | 532 | 0.2649 | 0.9186 | 0.9187 | 0.9186 | 0.8681 | 0.9186 | 0.9186 | 0.8602 | 0.9203 | 0.9186 | 0.8797 |
63
+ | 0.2479 | 5.0 | 665 | 0.2643 | 0.9167 | 0.9166 | 0.9167 | 0.8749 | 0.9167 | 0.9167 | 0.8684 | 0.9168 | 0.9167 | 0.8822 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.28.1
69
+ - Pytorch 2.0.0
70
+ - Datasets 2.11.0
71
+ - Tokenizers 0.13.3