Doctor-Shotgun commited on
Commit
147562c
1 Parent(s): 0045d52

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: limarp-lora-out
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
13
+ # limarp-lora-out
14
+
15
+ This model was trained from scratch on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 1.8232
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 0.00015
37
+ - train_batch_size: 2
38
+ - eval_batch_size: 2
39
+ - seed: 42
40
+ - gradient_accumulation_steps: 4
41
+ - total_train_batch_size: 8
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: cosine
44
+ - lr_scheduler_warmup_steps: 10
45
+ - num_epochs: 2
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:-----:|:----:|:---------------:|
51
+ | 1.8482 | 0.09 | 20 | 1.8569 |
52
+ | 1.6823 | 0.18 | 40 | 1.8400 |
53
+ | 1.779 | 0.27 | 60 | 1.8329 |
54
+ | 1.7776 | 0.36 | 80 | 1.8287 |
55
+ | 1.7773 | 0.45 | 100 | 1.8280 |
56
+ | 1.7328 | 0.53 | 120 | 1.8273 |
57
+ | 1.7349 | 0.62 | 140 | 1.8243 |
58
+ | 1.7789 | 0.71 | 160 | 1.8228 |
59
+ | 1.8113 | 0.8 | 180 | 1.8215 |
60
+ | 1.7 | 0.89 | 200 | 1.8203 |
61
+ | 1.7279 | 0.98 | 220 | 1.8201 |
62
+ | 1.7605 | 1.07 | 240 | 1.8225 |
63
+ | 1.7492 | 1.16 | 260 | 1.8245 |
64
+ | 1.7823 | 1.25 | 280 | 1.8235 |
65
+ | 1.6247 | 1.34 | 300 | 1.8247 |
66
+ | 1.6858 | 1.43 | 320 | 1.8246 |
67
+ | 1.6561 | 1.51 | 340 | 1.8240 |
68
+ | 1.7093 | 1.6 | 360 | 1.8240 |
69
+ | 1.6844 | 1.69 | 380 | 1.8235 |
70
+ | 1.6608 | 1.78 | 400 | 1.8233 |
71
+ | 1.7686 | 1.87 | 420 | 1.8233 |
72
+ | 1.7189 | 1.96 | 440 | 1.8232 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.35.0.dev0
78
+ - Pytorch 2.0.1+cu118
79
+ - Datasets 2.14.5
80
+ - Tokenizers 0.14.1
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Llama-2-70b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "v_proj",
21
+ "gate_proj",
22
+ "down_proj",
23
+ "k_proj",
24
+ "up_proj",
25
+ "q_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:804425f683f948f6a9c74d2fd3c2db925cda4622e8d5567728be67da19b40703
3
+ size 1657154757
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "</s>": 2,
3
+ "<s>": 1,
4
+ "<unk>": 0
5
+ }
checkpoint-224/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Llama-2-70b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
checkpoint-224/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Llama-2-70b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "v_proj",
21
+ "gate_proj",
22
+ "down_proj",
23
+ "k_proj",
24
+ "up_proj",
25
+ "q_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-224/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:498d185007792b9e38debb130d696879a26455307eaa9babda9002682f19dd02
3
+ size 1657154757
checkpoint-224/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a2261c45b3014c0341f818b21558c991be149f48fd6caa0fc763d7261ced02f
3
+ size 831304863
checkpoint-224/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba6b94fceec555659b11e2475bd3e252cbb1df24a948150562d19ee37aa38147
3
+ size 14575
checkpoint-224/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9aa118f2651ca78d5ef54f102ac14a150636031895d6e8f39be07723eca7d4d9
3
+ size 627
checkpoint-224/trainer_state.json ADDED
@@ -0,0 +1,1451 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9977728285077951,
5
+ "eval_steps": 20,
6
+ "global_step": 224,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 1.4999999999999999e-05,
14
+ "loss": 1.9335,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 2.9999999999999997e-05,
20
+ "loss": 1.9972,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 4.4999999999999996e-05,
26
+ "loss": 1.8186,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.02,
31
+ "learning_rate": 5.9999999999999995e-05,
32
+ "loss": 1.9861,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 7.5e-05,
38
+ "loss": 1.8548,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.03,
43
+ "learning_rate": 8.999999999999999e-05,
44
+ "loss": 1.8485,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.03,
49
+ "learning_rate": 0.00010499999999999999,
50
+ "loss": 1.8735,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.04,
55
+ "learning_rate": 0.00011999999999999999,
56
+ "loss": 1.849,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.04,
61
+ "learning_rate": 0.000135,
62
+ "loss": 1.8286,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.04,
67
+ "learning_rate": 0.00015,
68
+ "loss": 1.8831,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.05,
73
+ "learning_rate": 0.0001499980707836663,
74
+ "loss": 1.8715,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.05,
79
+ "learning_rate": 0.00014999228323391527,
80
+ "loss": 1.9058,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.06,
85
+ "learning_rate": 0.00014998263764849182,
86
+ "loss": 1.8479,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.06,
91
+ "learning_rate": 0.0001499691345236205,
92
+ "loss": 1.8237,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.07,
97
+ "learning_rate": 0.00014995177455397998,
98
+ "loss": 1.8827,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.07,
103
+ "learning_rate": 0.00014993055863266725,
104
+ "loss": 1.8112,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.08,
109
+ "learning_rate": 0.00014990548785115166,
110
+ "loss": 1.7889,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.08,
115
+ "learning_rate": 0.00014987656349921887,
116
+ "loss": 1.7984,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.08,
121
+ "learning_rate": 0.00014984378706490442,
122
+ "loss": 1.7704,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.09,
127
+ "learning_rate": 0.00014980716023441714,
128
+ "loss": 1.8482,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.09,
133
+ "eval_loss": 1.8568648099899292,
134
+ "eval_runtime": 38.6845,
135
+ "eval_samples_per_second": 0.595,
136
+ "eval_steps_per_second": 0.31,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.09,
141
+ "learning_rate": 0.00014976668489205246,
142
+ "loss": 1.8263,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.1,
147
+ "learning_rate": 0.00014972236312009557,
148
+ "loss": 1.7868,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.1,
153
+ "learning_rate": 0.00014967419719871407,
154
+ "loss": 1.7943,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.11,
159
+ "learning_rate": 0.0001496221896058408,
160
+ "loss": 1.7331,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.11,
165
+ "learning_rate": 0.00014956634301704636,
166
+ "loss": 1.7753,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.12,
171
+ "learning_rate": 0.00014950666030540152,
172
+ "loss": 1.8235,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.12,
177
+ "learning_rate": 0.0001494431445413292,
178
+ "loss": 1.7779,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.12,
183
+ "learning_rate": 0.00014937579899244673,
184
+ "loss": 1.7464,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.13,
189
+ "learning_rate": 0.00014930462712339768,
190
+ "loss": 1.8215,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.13,
195
+ "learning_rate": 0.00014922963259567356,
196
+ "loss": 1.8046,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.14,
201
+ "learning_rate": 0.00014915081926742551,
202
+ "loss": 1.7785,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.14,
207
+ "learning_rate": 0.00014906819119326584,
208
+ "loss": 1.7834,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.15,
213
+ "learning_rate": 0.00014898175262405928,
214
+ "loss": 1.7547,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.15,
219
+ "learning_rate": 0.00014889150800670453,
220
+ "loss": 1.7734,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.16,
225
+ "learning_rate": 0.00014879746198390533,
226
+ "loss": 1.6926,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.16,
231
+ "learning_rate": 0.00014869961939393165,
232
+ "loss": 1.8298,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.16,
237
+ "learning_rate": 0.00014859798527037068,
238
+ "loss": 1.8283,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.17,
243
+ "learning_rate": 0.00014849256484186814,
244
+ "loss": 1.8148,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.17,
249
+ "learning_rate": 0.000148383363531859,
250
+ "loss": 1.7145,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.18,
255
+ "learning_rate": 0.00014827038695828862,
256
+ "loss": 1.6823,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.18,
261
+ "eval_loss": 1.8399871587753296,
262
+ "eval_runtime": 38.6779,
263
+ "eval_samples_per_second": 0.595,
264
+ "eval_steps_per_second": 0.31,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.18,
269
+ "learning_rate": 0.00014815364093332368,
270
+ "loss": 1.7295,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.19,
275
+ "learning_rate": 0.00014803313146305322,
276
+ "loss": 1.8108,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.19,
281
+ "learning_rate": 0.00014790886474717958,
282
+ "loss": 1.8416,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.2,
287
+ "learning_rate": 0.00014778084717869953,
288
+ "loss": 1.742,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.2,
293
+ "learning_rate": 0.0001476490853435753,
294
+ "loss": 1.8345,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.2,
299
+ "learning_rate": 0.00014751358602039578,
300
+ "loss": 1.769,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.21,
305
+ "learning_rate": 0.0001473743561800279,
306
+ "loss": 1.8211,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.21,
311
+ "learning_rate": 0.00014723140298525782,
312
+ "loss": 1.7149,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.22,
317
+ "learning_rate": 0.00014708473379042254,
318
+ "loss": 1.7783,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.22,
323
+ "learning_rate": 0.00014693435614103158,
324
+ "loss": 1.769,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.23,
329
+ "learning_rate": 0.00014678027777337876,
330
+ "loss": 1.7785,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.23,
335
+ "learning_rate": 0.00014662250661414414,
336
+ "loss": 1.8007,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.24,
341
+ "learning_rate": 0.00014646105077998633,
342
+ "loss": 1.7204,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.24,
347
+ "learning_rate": 0.00014629591857712485,
348
+ "loss": 1.7557,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.24,
353
+ "learning_rate": 0.00014612711850091285,
354
+ "loss": 1.752,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.25,
359
+ "learning_rate": 0.00014595465923540005,
360
+ "loss": 1.798,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.25,
365
+ "learning_rate": 0.000145778549652886,
366
+ "loss": 1.7952,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.26,
371
+ "learning_rate": 0.00014559879881346352,
372
+ "loss": 1.6717,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.26,
377
+ "learning_rate": 0.0001454154159645528,
378
+ "loss": 1.7873,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 0.27,
383
+ "learning_rate": 0.00014522841054042545,
384
+ "loss": 1.779,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 0.27,
389
+ "eval_loss": 1.8328531980514526,
390
+ "eval_runtime": 38.6671,
391
+ "eval_samples_per_second": 0.595,
392
+ "eval_steps_per_second": 0.31,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.27,
397
+ "learning_rate": 0.00014503779216171937,
398
+ "loss": 1.7467,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.28,
403
+ "learning_rate": 0.0001448435706349436,
404
+ "loss": 1.6856,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.28,
409
+ "learning_rate": 0.0001446457559519739,
410
+ "loss": 1.8307,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.29,
415
+ "learning_rate": 0.00014444435828953872,
416
+ "loss": 1.8962,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.29,
421
+ "learning_rate": 0.00014423938800869573,
422
+ "loss": 1.7645,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.29,
427
+ "learning_rate": 0.00014403085565429852,
428
+ "loss": 1.6491,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.3,
433
+ "learning_rate": 0.00014381877195445453,
434
+ "loss": 1.6784,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.3,
439
+ "learning_rate": 0.00014360314781997267,
440
+ "loss": 1.7785,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.31,
445
+ "learning_rate": 0.00014338399434380236,
446
+ "loss": 1.7061,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.31,
451
+ "learning_rate": 0.0001431613228004627,
452
+ "loss": 1.7057,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.32,
457
+ "learning_rate": 0.00014293514464546245,
458
+ "loss": 1.8556,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.32,
463
+ "learning_rate": 0.0001427054715147107,
464
+ "loss": 1.6799,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.33,
469
+ "learning_rate": 0.00014247231522391824,
470
+ "loss": 1.8307,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.33,
475
+ "learning_rate": 0.00014223568776798975,
476
+ "loss": 1.7393,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.33,
481
+ "learning_rate": 0.0001419956013204066,
482
+ "loss": 1.8024,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.34,
487
+ "learning_rate": 0.00014175206823260076,
488
+ "loss": 1.7319,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.34,
493
+ "learning_rate": 0.0001415051010333191,
494
+ "loss": 1.817,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.35,
499
+ "learning_rate": 0.00014125471242797913,
500
+ "loss": 1.8538,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.35,
505
+ "learning_rate": 0.00014100091529801515,
506
+ "loss": 1.7633,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.36,
511
+ "learning_rate": 0.0001407437227002157,
512
+ "loss": 1.7776,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.36,
517
+ "eval_loss": 1.8287429809570312,
518
+ "eval_runtime": 38.6957,
519
+ "eval_samples_per_second": 0.594,
520
+ "eval_steps_per_second": 0.31,
521
+ "step": 80
522
+ },
523
+ {
524
+ "epoch": 0.36,
525
+ "learning_rate": 0.00014048314786605168,
526
+ "loss": 1.6936,
527
+ "step": 81
528
+ },
529
+ {
530
+ "epoch": 0.37,
531
+ "learning_rate": 0.00014021920420099581,
532
+ "loss": 1.8594,
533
+ "step": 82
534
+ },
535
+ {
536
+ "epoch": 0.37,
537
+ "learning_rate": 0.0001399519052838329,
538
+ "loss": 1.7749,
539
+ "step": 83
540
+ },
541
+ {
542
+ "epoch": 0.37,
543
+ "learning_rate": 0.00013968126486596123,
544
+ "loss": 1.7107,
545
+ "step": 84
546
+ },
547
+ {
548
+ "epoch": 0.38,
549
+ "learning_rate": 0.0001394072968706852,
550
+ "loss": 1.8344,
551
+ "step": 85
552
+ },
553
+ {
554
+ "epoch": 0.38,
555
+ "learning_rate": 0.00013913001539249902,
556
+ "loss": 1.7395,
557
+ "step": 86
558
+ },
559
+ {
560
+ "epoch": 0.39,
561
+ "learning_rate": 0.0001388494346963615,
562
+ "loss": 1.7746,
563
+ "step": 87
564
+ },
565
+ {
566
+ "epoch": 0.39,
567
+ "learning_rate": 0.00013856556921696233,
568
+ "loss": 1.7982,
569
+ "step": 88
570
+ },
571
+ {
572
+ "epoch": 0.4,
573
+ "learning_rate": 0.00013827843355797932,
574
+ "loss": 1.7042,
575
+ "step": 89
576
+ },
577
+ {
578
+ "epoch": 0.4,
579
+ "learning_rate": 0.0001379880424913272,
580
+ "loss": 1.7393,
581
+ "step": 90
582
+ },
583
+ {
584
+ "epoch": 0.41,
585
+ "learning_rate": 0.00013769441095639774,
586
+ "loss": 1.7614,
587
+ "step": 91
588
+ },
589
+ {
590
+ "epoch": 0.41,
591
+ "learning_rate": 0.00013739755405929103,
592
+ "loss": 1.816,
593
+ "step": 92
594
+ },
595
+ {
596
+ "epoch": 0.41,
597
+ "learning_rate": 0.00013709748707203833,
598
+ "loss": 1.7349,
599
+ "step": 93
600
+ },
601
+ {
602
+ "epoch": 0.42,
603
+ "learning_rate": 0.00013679422543181656,
604
+ "loss": 1.8416,
605
+ "step": 94
606
+ },
607
+ {
608
+ "epoch": 0.42,
609
+ "learning_rate": 0.00013648778474015399,
610
+ "loss": 1.729,
611
+ "step": 95
612
+ },
613
+ {
614
+ "epoch": 0.43,
615
+ "learning_rate": 0.00013617818076212755,
616
+ "loss": 1.7117,
617
+ "step": 96
618
+ },
619
+ {
620
+ "epoch": 0.43,
621
+ "learning_rate": 0.00013586542942555207,
622
+ "loss": 1.7232,
623
+ "step": 97
624
+ },
625
+ {
626
+ "epoch": 0.44,
627
+ "learning_rate": 0.0001355495468201604,
628
+ "loss": 1.803,
629
+ "step": 98
630
+ },
631
+ {
632
+ "epoch": 0.44,
633
+ "learning_rate": 0.0001352305491967762,
634
+ "loss": 1.7586,
635
+ "step": 99
636
+ },
637
+ {
638
+ "epoch": 0.45,
639
+ "learning_rate": 0.00013490845296647736,
640
+ "loss": 1.7773,
641
+ "step": 100
642
+ },
643
+ {
644
+ "epoch": 0.45,
645
+ "eval_loss": 1.8279894590377808,
646
+ "eval_runtime": 38.6872,
647
+ "eval_samples_per_second": 0.595,
648
+ "eval_steps_per_second": 0.31,
649
+ "step": 100
650
+ },
651
+ {
652
+ "epoch": 0.45,
653
+ "learning_rate": 0.00013458327469975214,
654
+ "loss": 1.7503,
655
+ "step": 101
656
+ },
657
+ {
658
+ "epoch": 0.45,
659
+ "learning_rate": 0.00013425503112564653,
660
+ "loss": 1.7034,
661
+ "step": 102
662
+ },
663
+ {
664
+ "epoch": 0.46,
665
+ "learning_rate": 0.00013392373913090358,
666
+ "loss": 1.7173,
667
+ "step": 103
668
+ },
669
+ {
670
+ "epoch": 0.46,
671
+ "learning_rate": 0.00013358941575909464,
672
+ "loss": 1.7683,
673
+ "step": 104
674
+ },
675
+ {
676
+ "epoch": 0.47,
677
+ "learning_rate": 0.0001332520782097427,
678
+ "loss": 1.7292,
679
+ "step": 105
680
+ },
681
+ {
682
+ "epoch": 0.47,
683
+ "learning_rate": 0.0001329117438374373,
684
+ "loss": 1.8124,
685
+ "step": 106
686
+ },
687
+ {
688
+ "epoch": 0.48,
689
+ "learning_rate": 0.00013256843015094197,
690
+ "loss": 1.6621,
691
+ "step": 107
692
+ },
693
+ {
694
+ "epoch": 0.48,
695
+ "learning_rate": 0.00013222215481229326,
696
+ "loss": 1.7721,
697
+ "step": 108
698
+ },
699
+ {
700
+ "epoch": 0.49,
701
+ "learning_rate": 0.00013187293563589217,
702
+ "loss": 1.8054,
703
+ "step": 109
704
+ },
705
+ {
706
+ "epoch": 0.49,
707
+ "learning_rate": 0.00013152079058758781,
708
+ "loss": 1.7337,
709
+ "step": 110
710
+ },
711
+ {
712
+ "epoch": 0.49,
713
+ "learning_rate": 0.00013116573778375296,
714
+ "loss": 1.7686,
715
+ "step": 111
716
+ },
717
+ {
718
+ "epoch": 0.5,
719
+ "learning_rate": 0.00013080779549035204,
720
+ "loss": 1.6409,
721
+ "step": 112
722
+ },
723
+ {
724
+ "epoch": 0.5,
725
+ "learning_rate": 0.0001304469821220016,
726
+ "loss": 1.7644,
727
+ "step": 113
728
+ },
729
+ {
730
+ "epoch": 0.51,
731
+ "learning_rate": 0.00013008331624102284,
732
+ "loss": 1.6537,
733
+ "step": 114
734
+ },
735
+ {
736
+ "epoch": 0.51,
737
+ "learning_rate": 0.00012971681655648656,
738
+ "loss": 1.702,
739
+ "step": 115
740
+ },
741
+ {
742
+ "epoch": 0.52,
743
+ "learning_rate": 0.00012934750192325088,
744
+ "loss": 1.7618,
745
+ "step": 116
746
+ },
747
+ {
748
+ "epoch": 0.52,
749
+ "learning_rate": 0.00012897539134099103,
750
+ "loss": 1.7597,
751
+ "step": 117
752
+ },
753
+ {
754
+ "epoch": 0.53,
755
+ "learning_rate": 0.00012860050395322207,
756
+ "loss": 1.7688,
757
+ "step": 118
758
+ },
759
+ {
760
+ "epoch": 0.53,
761
+ "learning_rate": 0.0001282228590463139,
762
+ "loss": 1.787,
763
+ "step": 119
764
+ },
765
+ {
766
+ "epoch": 0.53,
767
+ "learning_rate": 0.0001278424760484991,
768
+ "loss": 1.7328,
769
+ "step": 120
770
+ },
771
+ {
772
+ "epoch": 0.53,
773
+ "eval_loss": 1.827257752418518,
774
+ "eval_runtime": 38.6877,
775
+ "eval_samples_per_second": 0.595,
776
+ "eval_steps_per_second": 0.31,
777
+ "step": 120
778
+ },
779
+ {
780
+ "epoch": 0.54,
781
+ "learning_rate": 0.0001274593745288735,
782
+ "loss": 1.7133,
783
+ "step": 121
784
+ },
785
+ {
786
+ "epoch": 0.54,
787
+ "learning_rate": 0.00012707357419638936,
788
+ "loss": 1.713,
789
+ "step": 122
790
+ },
791
+ {
792
+ "epoch": 0.55,
793
+ "learning_rate": 0.00012668509489884141,
794
+ "loss": 1.713,
795
+ "step": 123
796
+ },
797
+ {
798
+ "epoch": 0.55,
799
+ "learning_rate": 0.0001262939566218458,
800
+ "loss": 1.7917,
801
+ "step": 124
802
+ },
803
+ {
804
+ "epoch": 0.56,
805
+ "learning_rate": 0.0001259001794878119,
806
+ "loss": 1.8045,
807
+ "step": 125
808
+ },
809
+ {
810
+ "epoch": 0.56,
811
+ "learning_rate": 0.00012550378375490723,
812
+ "loss": 1.6312,
813
+ "step": 126
814
+ },
815
+ {
816
+ "epoch": 0.57,
817
+ "learning_rate": 0.000125104789816015,
818
+ "loss": 1.8702,
819
+ "step": 127
820
+ },
821
+ {
822
+ "epoch": 0.57,
823
+ "learning_rate": 0.0001247032181976852,
824
+ "loss": 1.7282,
825
+ "step": 128
826
+ },
827
+ {
828
+ "epoch": 0.57,
829
+ "learning_rate": 0.0001242990895590785,
830
+ "loss": 1.6761,
831
+ "step": 129
832
+ },
833
+ {
834
+ "epoch": 0.58,
835
+ "learning_rate": 0.00012389242469090342,
836
+ "loss": 1.8468,
837
+ "step": 130
838
+ },
839
+ {
840
+ "epoch": 0.58,
841
+ "learning_rate": 0.00012348324451434684,
842
+ "loss": 1.7638,
843
+ "step": 131
844
+ },
845
+ {
846
+ "epoch": 0.59,
847
+ "learning_rate": 0.00012307157007999755,
848
+ "loss": 1.7799,
849
+ "step": 132
850
+ },
851
+ {
852
+ "epoch": 0.59,
853
+ "learning_rate": 0.0001226574225667633,
854
+ "loss": 1.7186,
855
+ "step": 133
856
+ },
857
+ {
858
+ "epoch": 0.6,
859
+ "learning_rate": 0.0001222408232807814,
860
+ "loss": 1.8299,
861
+ "step": 134
862
+ },
863
+ {
864
+ "epoch": 0.6,
865
+ "learning_rate": 0.00012182179365432245,
866
+ "loss": 1.722,
867
+ "step": 135
868
+ },
869
+ {
870
+ "epoch": 0.61,
871
+ "learning_rate": 0.00012140035524468775,
872
+ "loss": 1.8144,
873
+ "step": 136
874
+ },
875
+ {
876
+ "epoch": 0.61,
877
+ "learning_rate": 0.00012097652973310031,
878
+ "loss": 1.7382,
879
+ "step": 137
880
+ },
881
+ {
882
+ "epoch": 0.61,
883
+ "learning_rate": 0.00012055033892358951,
884
+ "loss": 1.743,
885
+ "step": 138
886
+ },
887
+ {
888
+ "epoch": 0.62,
889
+ "learning_rate": 0.00012012180474186917,
890
+ "loss": 1.8136,
891
+ "step": 139
892
+ },
893
+ {
894
+ "epoch": 0.62,
895
+ "learning_rate": 0.00011969094923420983,
896
+ "loss": 1.7349,
897
+ "step": 140
898
+ },
899
+ {
900
+ "epoch": 0.62,
901
+ "eval_loss": 1.8242559432983398,
902
+ "eval_runtime": 38.7105,
903
+ "eval_samples_per_second": 0.594,
904
+ "eval_steps_per_second": 0.31,
905
+ "step": 140
906
+ },
907
+ {
908
+ "epoch": 0.63,
909
+ "learning_rate": 0.00011925779456630433,
910
+ "loss": 1.7115,
911
+ "step": 141
912
+ },
913
+ {
914
+ "epoch": 0.63,
915
+ "learning_rate": 0.00011882236302212763,
916
+ "loss": 1.8439,
917
+ "step": 142
918
+ },
919
+ {
920
+ "epoch": 0.64,
921
+ "learning_rate": 0.00011838467700279029,
922
+ "loss": 1.7552,
923
+ "step": 143
924
+ },
925
+ {
926
+ "epoch": 0.64,
927
+ "learning_rate": 0.00011794475902538616,
928
+ "loss": 1.6786,
929
+ "step": 144
930
+ },
931
+ {
932
+ "epoch": 0.65,
933
+ "learning_rate": 0.00011750263172183381,
934
+ "loss": 1.7692,
935
+ "step": 145
936
+ },
937
+ {
938
+ "epoch": 0.65,
939
+ "learning_rate": 0.00011705831783771233,
940
+ "loss": 1.7684,
941
+ "step": 146
942
+ },
943
+ {
944
+ "epoch": 0.65,
945
+ "learning_rate": 0.00011661184023109111,
946
+ "loss": 1.8193,
947
+ "step": 147
948
+ },
949
+ {
950
+ "epoch": 0.66,
951
+ "learning_rate": 0.00011616322187135392,
952
+ "loss": 1.7443,
953
+ "step": 148
954
+ },
955
+ {
956
+ "epoch": 0.66,
957
+ "learning_rate": 0.00011571248583801724,
958
+ "loss": 1.7018,
959
+ "step": 149
960
+ },
961
+ {
962
+ "epoch": 0.67,
963
+ "learning_rate": 0.00011525965531954288,
964
+ "loss": 1.7432,
965
+ "step": 150
966
+ },
967
+ {
968
+ "epoch": 0.67,
969
+ "learning_rate": 0.00011480475361214499,
970
+ "loss": 1.7917,
971
+ "step": 151
972
+ },
973
+ {
974
+ "epoch": 0.68,
975
+ "learning_rate": 0.00011434780411859174,
976
+ "loss": 1.865,
977
+ "step": 152
978
+ },
979
+ {
980
+ "epoch": 0.68,
981
+ "learning_rate": 0.00011388883034700114,
982
+ "loss": 1.7842,
983
+ "step": 153
984
+ },
985
+ {
986
+ "epoch": 0.69,
987
+ "learning_rate": 0.00011342785590963177,
988
+ "loss": 1.7774,
989
+ "step": 154
990
+ },
991
+ {
992
+ "epoch": 0.69,
993
+ "learning_rate": 0.000112964904521668,
994
+ "loss": 1.7166,
995
+ "step": 155
996
+ },
997
+ {
998
+ "epoch": 0.69,
999
+ "learning_rate": 0.0001125,
1000
+ "loss": 1.7503,
1001
+ "step": 156
1002
+ },
1003
+ {
1004
+ "epoch": 0.7,
1005
+ "learning_rate": 0.00011203316626199829,
1006
+ "loss": 1.7856,
1007
+ "step": 157
1008
+ },
1009
+ {
1010
+ "epoch": 0.7,
1011
+ "learning_rate": 0.0001115644273242835,
1012
+ "loss": 1.7357,
1013
+ "step": 158
1014
+ },
1015
+ {
1016
+ "epoch": 0.71,
1017
+ "learning_rate": 0.00011109380730149069,
1018
+ "loss": 1.7742,
1019
+ "step": 159
1020
+ },
1021
+ {
1022
+ "epoch": 0.71,
1023
+ "learning_rate": 0.00011062133040502877,
1024
+ "loss": 1.7789,
1025
+ "step": 160
1026
+ },
1027
+ {
1028
+ "epoch": 0.71,
1029
+ "eval_loss": 1.8227835893630981,
1030
+ "eval_runtime": 38.6711,
1031
+ "eval_samples_per_second": 0.595,
1032
+ "eval_steps_per_second": 0.31,
1033
+ "step": 160
1034
+ },
1035
+ {
1036
+ "epoch": 0.72,
1037
+ "learning_rate": 0.00011014702094183498,
1038
+ "loss": 1.7917,
1039
+ "step": 161
1040
+ },
1041
+ {
1042
+ "epoch": 0.72,
1043
+ "learning_rate": 0.00010967090331312437,
1044
+ "loss": 1.7337,
1045
+ "step": 162
1046
+ },
1047
+ {
1048
+ "epoch": 0.73,
1049
+ "learning_rate": 0.0001091930020131344,
1050
+ "loss": 1.7775,
1051
+ "step": 163
1052
+ },
1053
+ {
1054
+ "epoch": 0.73,
1055
+ "learning_rate": 0.00010871334162786493,
1056
+ "loss": 1.751,
1057
+ "step": 164
1058
+ },
1059
+ {
1060
+ "epoch": 0.73,
1061
+ "learning_rate": 0.00010823194683381329,
1062
+ "loss": 1.783,
1063
+ "step": 165
1064
+ },
1065
+ {
1066
+ "epoch": 0.74,
1067
+ "learning_rate": 0.00010774884239670479,
1068
+ "loss": 1.6785,
1069
+ "step": 166
1070
+ },
1071
+ {
1072
+ "epoch": 0.74,
1073
+ "learning_rate": 0.00010726405317021866,
1074
+ "loss": 1.8272,
1075
+ "step": 167
1076
+ },
1077
+ {
1078
+ "epoch": 0.75,
1079
+ "learning_rate": 0.0001067776040947094,
1080
+ "loss": 1.8814,
1081
+ "step": 168
1082
+ },
1083
+ {
1084
+ "epoch": 0.75,
1085
+ "learning_rate": 0.00010628952019592376,
1086
+ "loss": 1.8227,
1087
+ "step": 169
1088
+ },
1089
+ {
1090
+ "epoch": 0.76,
1091
+ "learning_rate": 0.00010579982658371316,
1092
+ "loss": 1.6738,
1093
+ "step": 170
1094
+ },
1095
+ {
1096
+ "epoch": 0.76,
1097
+ "learning_rate": 0.00010530854845074204,
1098
+ "loss": 1.7693,
1099
+ "step": 171
1100
+ },
1101
+ {
1102
+ "epoch": 0.77,
1103
+ "learning_rate": 0.00010481571107119169,
1104
+ "loss": 1.7958,
1105
+ "step": 172
1106
+ },
1107
+ {
1108
+ "epoch": 0.77,
1109
+ "learning_rate": 0.00010432133979946002,
1110
+ "loss": 1.7993,
1111
+ "step": 173
1112
+ },
1113
+ {
1114
+ "epoch": 0.78,
1115
+ "learning_rate": 0.00010382546006885724,
1116
+ "loss": 1.614,
1117
+ "step": 174
1118
+ },
1119
+ {
1120
+ "epoch": 0.78,
1121
+ "learning_rate": 0.00010332809739029735,
1122
+ "loss": 1.7895,
1123
+ "step": 175
1124
+ },
1125
+ {
1126
+ "epoch": 0.78,
1127
+ "learning_rate": 0.0001028292773509858,
1128
+ "loss": 1.7137,
1129
+ "step": 176
1130
+ },
1131
+ {
1132
+ "epoch": 0.79,
1133
+ "learning_rate": 0.00010232902561310306,
1134
+ "loss": 1.7761,
1135
+ "step": 177
1136
+ },
1137
+ {
1138
+ "epoch": 0.79,
1139
+ "learning_rate": 0.00010182736791248443,
1140
+ "loss": 1.6959,
1141
+ "step": 178
1142
+ },
1143
+ {
1144
+ "epoch": 0.8,
1145
+ "learning_rate": 0.00010132433005729598,
1146
+ "loss": 1.8765,
1147
+ "step": 179
1148
+ },
1149
+ {
1150
+ "epoch": 0.8,
1151
+ "learning_rate": 0.000100819937926707,
1152
+ "loss": 1.8113,
1153
+ "step": 180
1154
+ },
1155
+ {
1156
+ "epoch": 0.8,
1157
+ "eval_loss": 1.8215252161026,
1158
+ "eval_runtime": 38.7001,
1159
+ "eval_samples_per_second": 0.594,
1160
+ "eval_steps_per_second": 0.31,
1161
+ "step": 180
1162
+ },
1163
+ {
1164
+ "epoch": 0.81,
1165
+ "learning_rate": 0.00010031421746955849,
1166
+ "loss": 1.7886,
1167
+ "step": 181
1168
+ },
1169
+ {
1170
+ "epoch": 0.81,
1171
+ "learning_rate": 9.98071947030282e-05,
1172
+ "loss": 1.8111,
1173
+ "step": 182
1174
+ },
1175
+ {
1176
+ "epoch": 0.82,
1177
+ "learning_rate": 9.929889571129219e-05,
1178
+ "loss": 1.7057,
1179
+ "step": 183
1180
+ },
1181
+ {
1182
+ "epoch": 0.82,
1183
+ "learning_rate": 9.878934664418295e-05,
1184
+ "loss": 1.8354,
1185
+ "step": 184
1186
+ },
1187
+ {
1188
+ "epoch": 0.82,
1189
+ "learning_rate": 9.8278573715844e-05,
1190
+ "loss": 1.8233,
1191
+ "step": 185
1192
+ },
1193
+ {
1194
+ "epoch": 0.83,
1195
+ "learning_rate": 9.776660320338138e-05,
1196
+ "loss": 1.7187,
1197
+ "step": 186
1198
+ },
1199
+ {
1200
+ "epoch": 0.83,
1201
+ "learning_rate": 9.725346144551176e-05,
1202
+ "loss": 1.6516,
1203
+ "step": 187
1204
+ },
1205
+ {
1206
+ "epoch": 0.84,
1207
+ "learning_rate": 9.673917484120744e-05,
1208
+ "loss": 1.692,
1209
+ "step": 188
1210
+ },
1211
+ {
1212
+ "epoch": 0.84,
1213
+ "learning_rate": 9.622376984833817e-05,
1214
+ "loss": 1.8001,
1215
+ "step": 189
1216
+ },
1217
+ {
1218
+ "epoch": 0.85,
1219
+ "learning_rate": 9.570727298231017e-05,
1220
+ "loss": 1.7514,
1221
+ "step": 190
1222
+ },
1223
+ {
1224
+ "epoch": 0.85,
1225
+ "learning_rate": 9.518971081470178e-05,
1226
+ "loss": 1.7001,
1227
+ "step": 191
1228
+ },
1229
+ {
1230
+ "epoch": 0.86,
1231
+ "learning_rate": 9.46711099718967e-05,
1232
+ "loss": 1.7984,
1233
+ "step": 192
1234
+ },
1235
+ {
1236
+ "epoch": 0.86,
1237
+ "learning_rate": 9.415149713371401e-05,
1238
+ "loss": 1.7321,
1239
+ "step": 193
1240
+ },
1241
+ {
1242
+ "epoch": 0.86,
1243
+ "learning_rate": 9.363089903203576e-05,
1244
+ "loss": 1.8009,
1245
+ "step": 194
1246
+ },
1247
+ {
1248
+ "epoch": 0.87,
1249
+ "learning_rate": 9.31093424494315e-05,
1250
+ "loss": 1.7863,
1251
+ "step": 195
1252
+ },
1253
+ {
1254
+ "epoch": 0.87,
1255
+ "learning_rate": 9.258685421778072e-05,
1256
+ "loss": 1.7774,
1257
+ "step": 196
1258
+ },
1259
+ {
1260
+ "epoch": 0.88,
1261
+ "learning_rate": 9.206346121689221e-05,
1262
+ "loss": 1.694,
1263
+ "step": 197
1264
+ },
1265
+ {
1266
+ "epoch": 0.88,
1267
+ "learning_rate": 9.153919037312131e-05,
1268
+ "loss": 1.7851,
1269
+ "step": 198
1270
+ },
1271
+ {
1272
+ "epoch": 0.89,
1273
+ "learning_rate": 9.10140686579847e-05,
1274
+ "loss": 1.6827,
1275
+ "step": 199
1276
+ },
1277
+ {
1278
+ "epoch": 0.89,
1279
+ "learning_rate": 9.04881230867728e-05,
1280
+ "loss": 1.7,
1281
+ "step": 200
1282
+ },
1283
+ {
1284
+ "epoch": 0.89,
1285
+ "eval_loss": 1.8203125,
1286
+ "eval_runtime": 38.7354,
1287
+ "eval_samples_per_second": 0.594,
1288
+ "eval_steps_per_second": 0.31,
1289
+ "step": 200
1290
+ },
1291
+ {
1292
+ "epoch": 0.9,
1293
+ "learning_rate": 8.99613807171599e-05,
1294
+ "loss": 1.8005,
1295
+ "step": 201
1296
+ },
1297
+ {
1298
+ "epoch": 0.9,
1299
+ "learning_rate": 8.943386864781223e-05,
1300
+ "loss": 1.7954,
1301
+ "step": 202
1302
+ },
1303
+ {
1304
+ "epoch": 0.9,
1305
+ "learning_rate": 8.890561401699381e-05,
1306
+ "loss": 1.7705,
1307
+ "step": 203
1308
+ },
1309
+ {
1310
+ "epoch": 0.91,
1311
+ "learning_rate": 8.837664400117028e-05,
1312
+ "loss": 1.7928,
1313
+ "step": 204
1314
+ },
1315
+ {
1316
+ "epoch": 0.91,
1317
+ "learning_rate": 8.784698581361081e-05,
1318
+ "loss": 1.8298,
1319
+ "step": 205
1320
+ },
1321
+ {
1322
+ "epoch": 0.92,
1323
+ "learning_rate": 8.731666670298816e-05,
1324
+ "loss": 1.7958,
1325
+ "step": 206
1326
+ },
1327
+ {
1328
+ "epoch": 0.92,
1329
+ "learning_rate": 8.678571395197668e-05,
1330
+ "loss": 1.8233,
1331
+ "step": 207
1332
+ },
1333
+ {
1334
+ "epoch": 0.93,
1335
+ "learning_rate": 8.625415487584894e-05,
1336
+ "loss": 1.717,
1337
+ "step": 208
1338
+ },
1339
+ {
1340
+ "epoch": 0.93,
1341
+ "learning_rate": 8.572201682107032e-05,
1342
+ "loss": 1.8032,
1343
+ "step": 209
1344
+ },
1345
+ {
1346
+ "epoch": 0.94,
1347
+ "learning_rate": 8.518932716389221e-05,
1348
+ "loss": 1.8317,
1349
+ "step": 210
1350
+ },
1351
+ {
1352
+ "epoch": 0.94,
1353
+ "learning_rate": 8.465611330894356e-05,
1354
+ "loss": 1.7089,
1355
+ "step": 211
1356
+ },
1357
+ {
1358
+ "epoch": 0.94,
1359
+ "learning_rate": 8.412240268782118e-05,
1360
+ "loss": 1.8331,
1361
+ "step": 212
1362
+ },
1363
+ {
1364
+ "epoch": 0.95,
1365
+ "learning_rate": 8.358822275767832e-05,
1366
+ "loss": 1.7454,
1367
+ "step": 213
1368
+ },
1369
+ {
1370
+ "epoch": 0.95,
1371
+ "learning_rate": 8.305360099981222e-05,
1372
+ "loss": 1.7651,
1373
+ "step": 214
1374
+ },
1375
+ {
1376
+ "epoch": 0.96,
1377
+ "learning_rate": 8.251856491825029e-05,
1378
+ "loss": 1.6152,
1379
+ "step": 215
1380
+ },
1381
+ {
1382
+ "epoch": 0.96,
1383
+ "learning_rate": 8.198314203833513e-05,
1384
+ "loss": 1.7234,
1385
+ "step": 216
1386
+ },
1387
+ {
1388
+ "epoch": 0.97,
1389
+ "learning_rate": 8.144735990530849e-05,
1390
+ "loss": 1.811,
1391
+ "step": 217
1392
+ },
1393
+ {
1394
+ "epoch": 0.97,
1395
+ "learning_rate": 8.091124608289415e-05,
1396
+ "loss": 1.8182,
1397
+ "step": 218
1398
+ },
1399
+ {
1400
+ "epoch": 0.98,
1401
+ "learning_rate": 8.03748281518799e-05,
1402
+ "loss": 1.7904,
1403
+ "step": 219
1404
+ },
1405
+ {
1406
+ "epoch": 0.98,
1407
+ "learning_rate": 7.983813370869873e-05,
1408
+ "loss": 1.7279,
1409
+ "step": 220
1410
+ },
1411
+ {
1412
+ "epoch": 0.98,
1413
+ "eval_loss": 1.820069670677185,
1414
+ "eval_runtime": 38.6648,
1415
+ "eval_samples_per_second": 0.595,
1416
+ "eval_steps_per_second": 0.31,
1417
+ "step": 220
1418
+ },
1419
+ {
1420
+ "epoch": 0.98,
1421
+ "learning_rate": 7.930119036400885e-05,
1422
+ "loss": 1.7795,
1423
+ "step": 221
1424
+ },
1425
+ {
1426
+ "epoch": 0.99,
1427
+ "learning_rate": 7.876402574127354e-05,
1428
+ "loss": 1.718,
1429
+ "step": 222
1430
+ },
1431
+ {
1432
+ "epoch": 0.99,
1433
+ "learning_rate": 7.822666747533978e-05,
1434
+ "loss": 1.8449,
1435
+ "step": 223
1436
+ },
1437
+ {
1438
+ "epoch": 1.0,
1439
+ "learning_rate": 7.76891432110168e-05,
1440
+ "loss": 1.7184,
1441
+ "step": 224
1442
+ }
1443
+ ],
1444
+ "logging_steps": 1,
1445
+ "max_steps": 448,
1446
+ "num_train_epochs": 2,
1447
+ "save_steps": 500,
1448
+ "total_flos": 2.6131840010928783e+18,
1449
+ "trial_name": null,
1450
+ "trial_params": null
1451
+ }
checkpoint-224/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f141d0cd094541ad342b2893b053d48ac339035304cab8070541c0ee366277b8
3
+ size 4475
checkpoint-448/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Llama-2-70b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
checkpoint-448/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Llama-2-70b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "v_proj",
21
+ "gate_proj",
22
+ "down_proj",
23
+ "k_proj",
24
+ "up_proj",
25
+ "q_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-448/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:804425f683f948f6a9c74d2fd3c2db925cda4622e8d5567728be67da19b40703
3
+ size 1657154757
checkpoint-448/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:180d45527159471e6954ff1fd721ed97a51fa74e8b3bad563883ce89299ad19a
3
+ size 831306015
checkpoint-448/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ebe7863d4c54705d69ac6c3aa0bc356cb746e773a9b1c2f7925843a467fa931
3
+ size 14575
checkpoint-448/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e9d7a4343b50d61c41906b520c4ea1f0323be1eb6b7b589363af63cfdff5ea8
3
+ size 627
checkpoint-448/trainer_state.json ADDED
@@ -0,0 +1,2883 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9955456570155903,
5
+ "eval_steps": 20,
6
+ "global_step": 448,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 1.4999999999999999e-05,
14
+ "loss": 1.9335,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 2.9999999999999997e-05,
20
+ "loss": 1.9972,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 4.4999999999999996e-05,
26
+ "loss": 1.8186,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.02,
31
+ "learning_rate": 5.9999999999999995e-05,
32
+ "loss": 1.9861,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 7.5e-05,
38
+ "loss": 1.8548,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.03,
43
+ "learning_rate": 8.999999999999999e-05,
44
+ "loss": 1.8485,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.03,
49
+ "learning_rate": 0.00010499999999999999,
50
+ "loss": 1.8735,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.04,
55
+ "learning_rate": 0.00011999999999999999,
56
+ "loss": 1.849,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.04,
61
+ "learning_rate": 0.000135,
62
+ "loss": 1.8286,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.04,
67
+ "learning_rate": 0.00015,
68
+ "loss": 1.8831,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.05,
73
+ "learning_rate": 0.0001499980707836663,
74
+ "loss": 1.8715,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.05,
79
+ "learning_rate": 0.00014999228323391527,
80
+ "loss": 1.9058,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.06,
85
+ "learning_rate": 0.00014998263764849182,
86
+ "loss": 1.8479,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.06,
91
+ "learning_rate": 0.0001499691345236205,
92
+ "loss": 1.8237,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.07,
97
+ "learning_rate": 0.00014995177455397998,
98
+ "loss": 1.8827,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.07,
103
+ "learning_rate": 0.00014993055863266725,
104
+ "loss": 1.8112,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.08,
109
+ "learning_rate": 0.00014990548785115166,
110
+ "loss": 1.7889,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.08,
115
+ "learning_rate": 0.00014987656349921887,
116
+ "loss": 1.7984,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.08,
121
+ "learning_rate": 0.00014984378706490442,
122
+ "loss": 1.7704,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.09,
127
+ "learning_rate": 0.00014980716023441714,
128
+ "loss": 1.8482,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.09,
133
+ "eval_loss": 1.8568648099899292,
134
+ "eval_runtime": 38.6845,
135
+ "eval_samples_per_second": 0.595,
136
+ "eval_steps_per_second": 0.31,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.09,
141
+ "learning_rate": 0.00014976668489205246,
142
+ "loss": 1.8263,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.1,
147
+ "learning_rate": 0.00014972236312009557,
148
+ "loss": 1.7868,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.1,
153
+ "learning_rate": 0.00014967419719871407,
154
+ "loss": 1.7943,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.11,
159
+ "learning_rate": 0.0001496221896058408,
160
+ "loss": 1.7331,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.11,
165
+ "learning_rate": 0.00014956634301704636,
166
+ "loss": 1.7753,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.12,
171
+ "learning_rate": 0.00014950666030540152,
172
+ "loss": 1.8235,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.12,
177
+ "learning_rate": 0.0001494431445413292,
178
+ "loss": 1.7779,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.12,
183
+ "learning_rate": 0.00014937579899244673,
184
+ "loss": 1.7464,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.13,
189
+ "learning_rate": 0.00014930462712339768,
190
+ "loss": 1.8215,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.13,
195
+ "learning_rate": 0.00014922963259567356,
196
+ "loss": 1.8046,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.14,
201
+ "learning_rate": 0.00014915081926742551,
202
+ "loss": 1.7785,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.14,
207
+ "learning_rate": 0.00014906819119326584,
208
+ "loss": 1.7834,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.15,
213
+ "learning_rate": 0.00014898175262405928,
214
+ "loss": 1.7547,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.15,
219
+ "learning_rate": 0.00014889150800670453,
220
+ "loss": 1.7734,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.16,
225
+ "learning_rate": 0.00014879746198390533,
226
+ "loss": 1.6926,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.16,
231
+ "learning_rate": 0.00014869961939393165,
232
+ "loss": 1.8298,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.16,
237
+ "learning_rate": 0.00014859798527037068,
238
+ "loss": 1.8283,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.17,
243
+ "learning_rate": 0.00014849256484186814,
244
+ "loss": 1.8148,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.17,
249
+ "learning_rate": 0.000148383363531859,
250
+ "loss": 1.7145,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.18,
255
+ "learning_rate": 0.00014827038695828862,
256
+ "loss": 1.6823,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.18,
261
+ "eval_loss": 1.8399871587753296,
262
+ "eval_runtime": 38.6779,
263
+ "eval_samples_per_second": 0.595,
264
+ "eval_steps_per_second": 0.31,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.18,
269
+ "learning_rate": 0.00014815364093332368,
270
+ "loss": 1.7295,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.19,
275
+ "learning_rate": 0.00014803313146305322,
276
+ "loss": 1.8108,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.19,
281
+ "learning_rate": 0.00014790886474717958,
282
+ "loss": 1.8416,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.2,
287
+ "learning_rate": 0.00014778084717869953,
288
+ "loss": 1.742,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.2,
293
+ "learning_rate": 0.0001476490853435753,
294
+ "loss": 1.8345,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.2,
299
+ "learning_rate": 0.00014751358602039578,
300
+ "loss": 1.769,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.21,
305
+ "learning_rate": 0.0001473743561800279,
306
+ "loss": 1.8211,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.21,
311
+ "learning_rate": 0.00014723140298525782,
312
+ "loss": 1.7149,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.22,
317
+ "learning_rate": 0.00014708473379042254,
318
+ "loss": 1.7783,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.22,
323
+ "learning_rate": 0.00014693435614103158,
324
+ "loss": 1.769,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.23,
329
+ "learning_rate": 0.00014678027777337876,
330
+ "loss": 1.7785,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.23,
335
+ "learning_rate": 0.00014662250661414414,
336
+ "loss": 1.8007,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.24,
341
+ "learning_rate": 0.00014646105077998633,
342
+ "loss": 1.7204,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.24,
347
+ "learning_rate": 0.00014629591857712485,
348
+ "loss": 1.7557,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.24,
353
+ "learning_rate": 0.00014612711850091285,
354
+ "loss": 1.752,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.25,
359
+ "learning_rate": 0.00014595465923540005,
360
+ "loss": 1.798,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.25,
365
+ "learning_rate": 0.000145778549652886,
366
+ "loss": 1.7952,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.26,
371
+ "learning_rate": 0.00014559879881346352,
372
+ "loss": 1.6717,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.26,
377
+ "learning_rate": 0.0001454154159645528,
378
+ "loss": 1.7873,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 0.27,
383
+ "learning_rate": 0.00014522841054042545,
384
+ "loss": 1.779,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 0.27,
389
+ "eval_loss": 1.8328531980514526,
390
+ "eval_runtime": 38.6671,
391
+ "eval_samples_per_second": 0.595,
392
+ "eval_steps_per_second": 0.31,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.27,
397
+ "learning_rate": 0.00014503779216171937,
398
+ "loss": 1.7467,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.28,
403
+ "learning_rate": 0.0001448435706349436,
404
+ "loss": 1.6856,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.28,
409
+ "learning_rate": 0.0001446457559519739,
410
+ "loss": 1.8307,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.29,
415
+ "learning_rate": 0.00014444435828953872,
416
+ "loss": 1.8962,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.29,
421
+ "learning_rate": 0.00014423938800869573,
422
+ "loss": 1.7645,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.29,
427
+ "learning_rate": 0.00014403085565429852,
428
+ "loss": 1.6491,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.3,
433
+ "learning_rate": 0.00014381877195445453,
434
+ "loss": 1.6784,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.3,
439
+ "learning_rate": 0.00014360314781997267,
440
+ "loss": 1.7785,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.31,
445
+ "learning_rate": 0.00014338399434380236,
446
+ "loss": 1.7061,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.31,
451
+ "learning_rate": 0.0001431613228004627,
452
+ "loss": 1.7057,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.32,
457
+ "learning_rate": 0.00014293514464546245,
458
+ "loss": 1.8556,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.32,
463
+ "learning_rate": 0.0001427054715147107,
464
+ "loss": 1.6799,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.33,
469
+ "learning_rate": 0.00014247231522391824,
470
+ "loss": 1.8307,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.33,
475
+ "learning_rate": 0.00014223568776798975,
476
+ "loss": 1.7393,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.33,
481
+ "learning_rate": 0.0001419956013204066,
482
+ "loss": 1.8024,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.34,
487
+ "learning_rate": 0.00014175206823260076,
488
+ "loss": 1.7319,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.34,
493
+ "learning_rate": 0.0001415051010333191,
494
+ "loss": 1.817,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.35,
499
+ "learning_rate": 0.00014125471242797913,
500
+ "loss": 1.8538,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.35,
505
+ "learning_rate": 0.00014100091529801515,
506
+ "loss": 1.7633,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.36,
511
+ "learning_rate": 0.0001407437227002157,
512
+ "loss": 1.7776,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.36,
517
+ "eval_loss": 1.8287429809570312,
518
+ "eval_runtime": 38.6957,
519
+ "eval_samples_per_second": 0.594,
520
+ "eval_steps_per_second": 0.31,
521
+ "step": 80
522
+ },
523
+ {
524
+ "epoch": 0.36,
525
+ "learning_rate": 0.00014048314786605168,
526
+ "loss": 1.6936,
527
+ "step": 81
528
+ },
529
+ {
530
+ "epoch": 0.37,
531
+ "learning_rate": 0.00014021920420099581,
532
+ "loss": 1.8594,
533
+ "step": 82
534
+ },
535
+ {
536
+ "epoch": 0.37,
537
+ "learning_rate": 0.0001399519052838329,
538
+ "loss": 1.7749,
539
+ "step": 83
540
+ },
541
+ {
542
+ "epoch": 0.37,
543
+ "learning_rate": 0.00013968126486596123,
544
+ "loss": 1.7107,
545
+ "step": 84
546
+ },
547
+ {
548
+ "epoch": 0.38,
549
+ "learning_rate": 0.0001394072968706852,
550
+ "loss": 1.8344,
551
+ "step": 85
552
+ },
553
+ {
554
+ "epoch": 0.38,
555
+ "learning_rate": 0.00013913001539249902,
556
+ "loss": 1.7395,
557
+ "step": 86
558
+ },
559
+ {
560
+ "epoch": 0.39,
561
+ "learning_rate": 0.0001388494346963615,
562
+ "loss": 1.7746,
563
+ "step": 87
564
+ },
565
+ {
566
+ "epoch": 0.39,
567
+ "learning_rate": 0.00013856556921696233,
568
+ "loss": 1.7982,
569
+ "step": 88
570
+ },
571
+ {
572
+ "epoch": 0.4,
573
+ "learning_rate": 0.00013827843355797932,
574
+ "loss": 1.7042,
575
+ "step": 89
576
+ },
577
+ {
578
+ "epoch": 0.4,
579
+ "learning_rate": 0.0001379880424913272,
580
+ "loss": 1.7393,
581
+ "step": 90
582
+ },
583
+ {
584
+ "epoch": 0.41,
585
+ "learning_rate": 0.00013769441095639774,
586
+ "loss": 1.7614,
587
+ "step": 91
588
+ },
589
+ {
590
+ "epoch": 0.41,
591
+ "learning_rate": 0.00013739755405929103,
592
+ "loss": 1.816,
593
+ "step": 92
594
+ },
595
+ {
596
+ "epoch": 0.41,
597
+ "learning_rate": 0.00013709748707203833,
598
+ "loss": 1.7349,
599
+ "step": 93
600
+ },
601
+ {
602
+ "epoch": 0.42,
603
+ "learning_rate": 0.00013679422543181656,
604
+ "loss": 1.8416,
605
+ "step": 94
606
+ },
607
+ {
608
+ "epoch": 0.42,
609
+ "learning_rate": 0.00013648778474015399,
610
+ "loss": 1.729,
611
+ "step": 95
612
+ },
613
+ {
614
+ "epoch": 0.43,
615
+ "learning_rate": 0.00013617818076212755,
616
+ "loss": 1.7117,
617
+ "step": 96
618
+ },
619
+ {
620
+ "epoch": 0.43,
621
+ "learning_rate": 0.00013586542942555207,
622
+ "loss": 1.7232,
623
+ "step": 97
624
+ },
625
+ {
626
+ "epoch": 0.44,
627
+ "learning_rate": 0.0001355495468201604,
628
+ "loss": 1.803,
629
+ "step": 98
630
+ },
631
+ {
632
+ "epoch": 0.44,
633
+ "learning_rate": 0.0001352305491967762,
634
+ "loss": 1.7586,
635
+ "step": 99
636
+ },
637
+ {
638
+ "epoch": 0.45,
639
+ "learning_rate": 0.00013490845296647736,
640
+ "loss": 1.7773,
641
+ "step": 100
642
+ },
643
+ {
644
+ "epoch": 0.45,
645
+ "eval_loss": 1.8279894590377808,
646
+ "eval_runtime": 38.6872,
647
+ "eval_samples_per_second": 0.595,
648
+ "eval_steps_per_second": 0.31,
649
+ "step": 100
650
+ },
651
+ {
652
+ "epoch": 0.45,
653
+ "learning_rate": 0.00013458327469975214,
654
+ "loss": 1.7503,
655
+ "step": 101
656
+ },
657
+ {
658
+ "epoch": 0.45,
659
+ "learning_rate": 0.00013425503112564653,
660
+ "loss": 1.7034,
661
+ "step": 102
662
+ },
663
+ {
664
+ "epoch": 0.46,
665
+ "learning_rate": 0.00013392373913090358,
666
+ "loss": 1.7173,
667
+ "step": 103
668
+ },
669
+ {
670
+ "epoch": 0.46,
671
+ "learning_rate": 0.00013358941575909464,
672
+ "loss": 1.7683,
673
+ "step": 104
674
+ },
675
+ {
676
+ "epoch": 0.47,
677
+ "learning_rate": 0.0001332520782097427,
678
+ "loss": 1.7292,
679
+ "step": 105
680
+ },
681
+ {
682
+ "epoch": 0.47,
683
+ "learning_rate": 0.0001329117438374373,
684
+ "loss": 1.8124,
685
+ "step": 106
686
+ },
687
+ {
688
+ "epoch": 0.48,
689
+ "learning_rate": 0.00013256843015094197,
690
+ "loss": 1.6621,
691
+ "step": 107
692
+ },
693
+ {
694
+ "epoch": 0.48,
695
+ "learning_rate": 0.00013222215481229326,
696
+ "loss": 1.7721,
697
+ "step": 108
698
+ },
699
+ {
700
+ "epoch": 0.49,
701
+ "learning_rate": 0.00013187293563589217,
702
+ "loss": 1.8054,
703
+ "step": 109
704
+ },
705
+ {
706
+ "epoch": 0.49,
707
+ "learning_rate": 0.00013152079058758781,
708
+ "loss": 1.7337,
709
+ "step": 110
710
+ },
711
+ {
712
+ "epoch": 0.49,
713
+ "learning_rate": 0.00013116573778375296,
714
+ "loss": 1.7686,
715
+ "step": 111
716
+ },
717
+ {
718
+ "epoch": 0.5,
719
+ "learning_rate": 0.00013080779549035204,
720
+ "loss": 1.6409,
721
+ "step": 112
722
+ },
723
+ {
724
+ "epoch": 0.5,
725
+ "learning_rate": 0.0001304469821220016,
726
+ "loss": 1.7644,
727
+ "step": 113
728
+ },
729
+ {
730
+ "epoch": 0.51,
731
+ "learning_rate": 0.00013008331624102284,
732
+ "loss": 1.6537,
733
+ "step": 114
734
+ },
735
+ {
736
+ "epoch": 0.51,
737
+ "learning_rate": 0.00012971681655648656,
738
+ "loss": 1.702,
739
+ "step": 115
740
+ },
741
+ {
742
+ "epoch": 0.52,
743
+ "learning_rate": 0.00012934750192325088,
744
+ "loss": 1.7618,
745
+ "step": 116
746
+ },
747
+ {
748
+ "epoch": 0.52,
749
+ "learning_rate": 0.00012897539134099103,
750
+ "loss": 1.7597,
751
+ "step": 117
752
+ },
753
+ {
754
+ "epoch": 0.53,
755
+ "learning_rate": 0.00012860050395322207,
756
+ "loss": 1.7688,
757
+ "step": 118
758
+ },
759
+ {
760
+ "epoch": 0.53,
761
+ "learning_rate": 0.0001282228590463139,
762
+ "loss": 1.787,
763
+ "step": 119
764
+ },
765
+ {
766
+ "epoch": 0.53,
767
+ "learning_rate": 0.0001278424760484991,
768
+ "loss": 1.7328,
769
+ "step": 120
770
+ },
771
+ {
772
+ "epoch": 0.53,
773
+ "eval_loss": 1.827257752418518,
774
+ "eval_runtime": 38.6877,
775
+ "eval_samples_per_second": 0.595,
776
+ "eval_steps_per_second": 0.31,
777
+ "step": 120
778
+ },
779
+ {
780
+ "epoch": 0.54,
781
+ "learning_rate": 0.0001274593745288735,
782
+ "loss": 1.7133,
783
+ "step": 121
784
+ },
785
+ {
786
+ "epoch": 0.54,
787
+ "learning_rate": 0.00012707357419638936,
788
+ "loss": 1.713,
789
+ "step": 122
790
+ },
791
+ {
792
+ "epoch": 0.55,
793
+ "learning_rate": 0.00012668509489884141,
794
+ "loss": 1.713,
795
+ "step": 123
796
+ },
797
+ {
798
+ "epoch": 0.55,
799
+ "learning_rate": 0.0001262939566218458,
800
+ "loss": 1.7917,
801
+ "step": 124
802
+ },
803
+ {
804
+ "epoch": 0.56,
805
+ "learning_rate": 0.0001259001794878119,
806
+ "loss": 1.8045,
807
+ "step": 125
808
+ },
809
+ {
810
+ "epoch": 0.56,
811
+ "learning_rate": 0.00012550378375490723,
812
+ "loss": 1.6312,
813
+ "step": 126
814
+ },
815
+ {
816
+ "epoch": 0.57,
817
+ "learning_rate": 0.000125104789816015,
818
+ "loss": 1.8702,
819
+ "step": 127
820
+ },
821
+ {
822
+ "epoch": 0.57,
823
+ "learning_rate": 0.0001247032181976852,
824
+ "loss": 1.7282,
825
+ "step": 128
826
+ },
827
+ {
828
+ "epoch": 0.57,
829
+ "learning_rate": 0.0001242990895590785,
830
+ "loss": 1.6761,
831
+ "step": 129
832
+ },
833
+ {
834
+ "epoch": 0.58,
835
+ "learning_rate": 0.00012389242469090342,
836
+ "loss": 1.8468,
837
+ "step": 130
838
+ },
839
+ {
840
+ "epoch": 0.58,
841
+ "learning_rate": 0.00012348324451434684,
842
+ "loss": 1.7638,
843
+ "step": 131
844
+ },
845
+ {
846
+ "epoch": 0.59,
847
+ "learning_rate": 0.00012307157007999755,
848
+ "loss": 1.7799,
849
+ "step": 132
850
+ },
851
+ {
852
+ "epoch": 0.59,
853
+ "learning_rate": 0.0001226574225667633,
854
+ "loss": 1.7186,
855
+ "step": 133
856
+ },
857
+ {
858
+ "epoch": 0.6,
859
+ "learning_rate": 0.0001222408232807814,
860
+ "loss": 1.8299,
861
+ "step": 134
862
+ },
863
+ {
864
+ "epoch": 0.6,
865
+ "learning_rate": 0.00012182179365432245,
866
+ "loss": 1.722,
867
+ "step": 135
868
+ },
869
+ {
870
+ "epoch": 0.61,
871
+ "learning_rate": 0.00012140035524468775,
872
+ "loss": 1.8144,
873
+ "step": 136
874
+ },
875
+ {
876
+ "epoch": 0.61,
877
+ "learning_rate": 0.00012097652973310031,
878
+ "loss": 1.7382,
879
+ "step": 137
880
+ },
881
+ {
882
+ "epoch": 0.61,
883
+ "learning_rate": 0.00012055033892358951,
884
+ "loss": 1.743,
885
+ "step": 138
886
+ },
887
+ {
888
+ "epoch": 0.62,
889
+ "learning_rate": 0.00012012180474186917,
890
+ "loss": 1.8136,
891
+ "step": 139
892
+ },
893
+ {
894
+ "epoch": 0.62,
895
+ "learning_rate": 0.00011969094923420983,
896
+ "loss": 1.7349,
897
+ "step": 140
898
+ },
899
+ {
900
+ "epoch": 0.62,
901
+ "eval_loss": 1.8242559432983398,
902
+ "eval_runtime": 38.7105,
903
+ "eval_samples_per_second": 0.594,
904
+ "eval_steps_per_second": 0.31,
905
+ "step": 140
906
+ },
907
+ {
908
+ "epoch": 0.63,
909
+ "learning_rate": 0.00011925779456630433,
910
+ "loss": 1.7115,
911
+ "step": 141
912
+ },
913
+ {
914
+ "epoch": 0.63,
915
+ "learning_rate": 0.00011882236302212763,
916
+ "loss": 1.8439,
917
+ "step": 142
918
+ },
919
+ {
920
+ "epoch": 0.64,
921
+ "learning_rate": 0.00011838467700279029,
922
+ "loss": 1.7552,
923
+ "step": 143
924
+ },
925
+ {
926
+ "epoch": 0.64,
927
+ "learning_rate": 0.00011794475902538616,
928
+ "loss": 1.6786,
929
+ "step": 144
930
+ },
931
+ {
932
+ "epoch": 0.65,
933
+ "learning_rate": 0.00011750263172183381,
934
+ "loss": 1.7692,
935
+ "step": 145
936
+ },
937
+ {
938
+ "epoch": 0.65,
939
+ "learning_rate": 0.00011705831783771233,
940
+ "loss": 1.7684,
941
+ "step": 146
942
+ },
943
+ {
944
+ "epoch": 0.65,
945
+ "learning_rate": 0.00011661184023109111,
946
+ "loss": 1.8193,
947
+ "step": 147
948
+ },
949
+ {
950
+ "epoch": 0.66,
951
+ "learning_rate": 0.00011616322187135392,
952
+ "loss": 1.7443,
953
+ "step": 148
954
+ },
955
+ {
956
+ "epoch": 0.66,
957
+ "learning_rate": 0.00011571248583801724,
958
+ "loss": 1.7018,
959
+ "step": 149
960
+ },
961
+ {
962
+ "epoch": 0.67,
963
+ "learning_rate": 0.00011525965531954288,
964
+ "loss": 1.7432,
965
+ "step": 150
966
+ },
967
+ {
968
+ "epoch": 0.67,
969
+ "learning_rate": 0.00011480475361214499,
970
+ "loss": 1.7917,
971
+ "step": 151
972
+ },
973
+ {
974
+ "epoch": 0.68,
975
+ "learning_rate": 0.00011434780411859174,
976
+ "loss": 1.865,
977
+ "step": 152
978
+ },
979
+ {
980
+ "epoch": 0.68,
981
+ "learning_rate": 0.00011388883034700114,
982
+ "loss": 1.7842,
983
+ "step": 153
984
+ },
985
+ {
986
+ "epoch": 0.69,
987
+ "learning_rate": 0.00011342785590963177,
988
+ "loss": 1.7774,
989
+ "step": 154
990
+ },
991
+ {
992
+ "epoch": 0.69,
993
+ "learning_rate": 0.000112964904521668,
994
+ "loss": 1.7166,
995
+ "step": 155
996
+ },
997
+ {
998
+ "epoch": 0.69,
999
+ "learning_rate": 0.0001125,
1000
+ "loss": 1.7503,
1001
+ "step": 156
1002
+ },
1003
+ {
1004
+ "epoch": 0.7,
1005
+ "learning_rate": 0.00011203316626199829,
1006
+ "loss": 1.7856,
1007
+ "step": 157
1008
+ },
1009
+ {
1010
+ "epoch": 0.7,
1011
+ "learning_rate": 0.0001115644273242835,
1012
+ "loss": 1.7357,
1013
+ "step": 158
1014
+ },
1015
+ {
1016
+ "epoch": 0.71,
1017
+ "learning_rate": 0.00011109380730149069,
1018
+ "loss": 1.7742,
1019
+ "step": 159
1020
+ },
1021
+ {
1022
+ "epoch": 0.71,
1023
+ "learning_rate": 0.00011062133040502877,
1024
+ "loss": 1.7789,
1025
+ "step": 160
1026
+ },
1027
+ {
1028
+ "epoch": 0.71,
1029
+ "eval_loss": 1.8227835893630981,
1030
+ "eval_runtime": 38.6711,
1031
+ "eval_samples_per_second": 0.595,
1032
+ "eval_steps_per_second": 0.31,
1033
+ "step": 160
1034
+ },
1035
+ {
1036
+ "epoch": 0.72,
1037
+ "learning_rate": 0.00011014702094183498,
1038
+ "loss": 1.7917,
1039
+ "step": 161
1040
+ },
1041
+ {
1042
+ "epoch": 0.72,
1043
+ "learning_rate": 0.00010967090331312437,
1044
+ "loss": 1.7337,
1045
+ "step": 162
1046
+ },
1047
+ {
1048
+ "epoch": 0.73,
1049
+ "learning_rate": 0.0001091930020131344,
1050
+ "loss": 1.7775,
1051
+ "step": 163
1052
+ },
1053
+ {
1054
+ "epoch": 0.73,
1055
+ "learning_rate": 0.00010871334162786493,
1056
+ "loss": 1.751,
1057
+ "step": 164
1058
+ },
1059
+ {
1060
+ "epoch": 0.73,
1061
+ "learning_rate": 0.00010823194683381329,
1062
+ "loss": 1.783,
1063
+ "step": 165
1064
+ },
1065
+ {
1066
+ "epoch": 0.74,
1067
+ "learning_rate": 0.00010774884239670479,
1068
+ "loss": 1.6785,
1069
+ "step": 166
1070
+ },
1071
+ {
1072
+ "epoch": 0.74,
1073
+ "learning_rate": 0.00010726405317021866,
1074
+ "loss": 1.8272,
1075
+ "step": 167
1076
+ },
1077
+ {
1078
+ "epoch": 0.75,
1079
+ "learning_rate": 0.0001067776040947094,
1080
+ "loss": 1.8814,
1081
+ "step": 168
1082
+ },
1083
+ {
1084
+ "epoch": 0.75,
1085
+ "learning_rate": 0.00010628952019592376,
1086
+ "loss": 1.8227,
1087
+ "step": 169
1088
+ },
1089
+ {
1090
+ "epoch": 0.76,
1091
+ "learning_rate": 0.00010579982658371316,
1092
+ "loss": 1.6738,
1093
+ "step": 170
1094
+ },
1095
+ {
1096
+ "epoch": 0.76,
1097
+ "learning_rate": 0.00010530854845074204,
1098
+ "loss": 1.7693,
1099
+ "step": 171
1100
+ },
1101
+ {
1102
+ "epoch": 0.77,
1103
+ "learning_rate": 0.00010481571107119169,
1104
+ "loss": 1.7958,
1105
+ "step": 172
1106
+ },
1107
+ {
1108
+ "epoch": 0.77,
1109
+ "learning_rate": 0.00010432133979946002,
1110
+ "loss": 1.7993,
1111
+ "step": 173
1112
+ },
1113
+ {
1114
+ "epoch": 0.78,
1115
+ "learning_rate": 0.00010382546006885724,
1116
+ "loss": 1.614,
1117
+ "step": 174
1118
+ },
1119
+ {
1120
+ "epoch": 0.78,
1121
+ "learning_rate": 0.00010332809739029735,
1122
+ "loss": 1.7895,
1123
+ "step": 175
1124
+ },
1125
+ {
1126
+ "epoch": 0.78,
1127
+ "learning_rate": 0.0001028292773509858,
1128
+ "loss": 1.7137,
1129
+ "step": 176
1130
+ },
1131
+ {
1132
+ "epoch": 0.79,
1133
+ "learning_rate": 0.00010232902561310306,
1134
+ "loss": 1.7761,
1135
+ "step": 177
1136
+ },
1137
+ {
1138
+ "epoch": 0.79,
1139
+ "learning_rate": 0.00010182736791248443,
1140
+ "loss": 1.6959,
1141
+ "step": 178
1142
+ },
1143
+ {
1144
+ "epoch": 0.8,
1145
+ "learning_rate": 0.00010132433005729598,
1146
+ "loss": 1.8765,
1147
+ "step": 179
1148
+ },
1149
+ {
1150
+ "epoch": 0.8,
1151
+ "learning_rate": 0.000100819937926707,
1152
+ "loss": 1.8113,
1153
+ "step": 180
1154
+ },
1155
+ {
1156
+ "epoch": 0.8,
1157
+ "eval_loss": 1.8215252161026,
1158
+ "eval_runtime": 38.7001,
1159
+ "eval_samples_per_second": 0.594,
1160
+ "eval_steps_per_second": 0.31,
1161
+ "step": 180
1162
+ },
1163
+ {
1164
+ "epoch": 0.81,
1165
+ "learning_rate": 0.00010031421746955849,
1166
+ "loss": 1.7886,
1167
+ "step": 181
1168
+ },
1169
+ {
1170
+ "epoch": 0.81,
1171
+ "learning_rate": 9.98071947030282e-05,
1172
+ "loss": 1.8111,
1173
+ "step": 182
1174
+ },
1175
+ {
1176
+ "epoch": 0.82,
1177
+ "learning_rate": 9.929889571129219e-05,
1178
+ "loss": 1.7057,
1179
+ "step": 183
1180
+ },
1181
+ {
1182
+ "epoch": 0.82,
1183
+ "learning_rate": 9.878934664418295e-05,
1184
+ "loss": 1.8354,
1185
+ "step": 184
1186
+ },
1187
+ {
1188
+ "epoch": 0.82,
1189
+ "learning_rate": 9.8278573715844e-05,
1190
+ "loss": 1.8233,
1191
+ "step": 185
1192
+ },
1193
+ {
1194
+ "epoch": 0.83,
1195
+ "learning_rate": 9.776660320338138e-05,
1196
+ "loss": 1.7187,
1197
+ "step": 186
1198
+ },
1199
+ {
1200
+ "epoch": 0.83,
1201
+ "learning_rate": 9.725346144551176e-05,
1202
+ "loss": 1.6516,
1203
+ "step": 187
1204
+ },
1205
+ {
1206
+ "epoch": 0.84,
1207
+ "learning_rate": 9.673917484120744e-05,
1208
+ "loss": 1.692,
1209
+ "step": 188
1210
+ },
1211
+ {
1212
+ "epoch": 0.84,
1213
+ "learning_rate": 9.622376984833817e-05,
1214
+ "loss": 1.8001,
1215
+ "step": 189
1216
+ },
1217
+ {
1218
+ "epoch": 0.85,
1219
+ "learning_rate": 9.570727298231017e-05,
1220
+ "loss": 1.7514,
1221
+ "step": 190
1222
+ },
1223
+ {
1224
+ "epoch": 0.85,
1225
+ "learning_rate": 9.518971081470178e-05,
1226
+ "loss": 1.7001,
1227
+ "step": 191
1228
+ },
1229
+ {
1230
+ "epoch": 0.86,
1231
+ "learning_rate": 9.46711099718967e-05,
1232
+ "loss": 1.7984,
1233
+ "step": 192
1234
+ },
1235
+ {
1236
+ "epoch": 0.86,
1237
+ "learning_rate": 9.415149713371401e-05,
1238
+ "loss": 1.7321,
1239
+ "step": 193
1240
+ },
1241
+ {
1242
+ "epoch": 0.86,
1243
+ "learning_rate": 9.363089903203576e-05,
1244
+ "loss": 1.8009,
1245
+ "step": 194
1246
+ },
1247
+ {
1248
+ "epoch": 0.87,
1249
+ "learning_rate": 9.31093424494315e-05,
1250
+ "loss": 1.7863,
1251
+ "step": 195
1252
+ },
1253
+ {
1254
+ "epoch": 0.87,
1255
+ "learning_rate": 9.258685421778072e-05,
1256
+ "loss": 1.7774,
1257
+ "step": 196
1258
+ },
1259
+ {
1260
+ "epoch": 0.88,
1261
+ "learning_rate": 9.206346121689221e-05,
1262
+ "loss": 1.694,
1263
+ "step": 197
1264
+ },
1265
+ {
1266
+ "epoch": 0.88,
1267
+ "learning_rate": 9.153919037312131e-05,
1268
+ "loss": 1.7851,
1269
+ "step": 198
1270
+ },
1271
+ {
1272
+ "epoch": 0.89,
1273
+ "learning_rate": 9.10140686579847e-05,
1274
+ "loss": 1.6827,
1275
+ "step": 199
1276
+ },
1277
+ {
1278
+ "epoch": 0.89,
1279
+ "learning_rate": 9.04881230867728e-05,
1280
+ "loss": 1.7,
1281
+ "step": 200
1282
+ },
1283
+ {
1284
+ "epoch": 0.89,
1285
+ "eval_loss": 1.8203125,
1286
+ "eval_runtime": 38.7354,
1287
+ "eval_samples_per_second": 0.594,
1288
+ "eval_steps_per_second": 0.31,
1289
+ "step": 200
1290
+ },
1291
+ {
1292
+ "epoch": 0.9,
1293
+ "learning_rate": 8.99613807171599e-05,
1294
+ "loss": 1.8005,
1295
+ "step": 201
1296
+ },
1297
+ {
1298
+ "epoch": 0.9,
1299
+ "learning_rate": 8.943386864781223e-05,
1300
+ "loss": 1.7954,
1301
+ "step": 202
1302
+ },
1303
+ {
1304
+ "epoch": 0.9,
1305
+ "learning_rate": 8.890561401699381e-05,
1306
+ "loss": 1.7705,
1307
+ "step": 203
1308
+ },
1309
+ {
1310
+ "epoch": 0.91,
1311
+ "learning_rate": 8.837664400117028e-05,
1312
+ "loss": 1.7928,
1313
+ "step": 204
1314
+ },
1315
+ {
1316
+ "epoch": 0.91,
1317
+ "learning_rate": 8.784698581361081e-05,
1318
+ "loss": 1.8298,
1319
+ "step": 205
1320
+ },
1321
+ {
1322
+ "epoch": 0.92,
1323
+ "learning_rate": 8.731666670298816e-05,
1324
+ "loss": 1.7958,
1325
+ "step": 206
1326
+ },
1327
+ {
1328
+ "epoch": 0.92,
1329
+ "learning_rate": 8.678571395197668e-05,
1330
+ "loss": 1.8233,
1331
+ "step": 207
1332
+ },
1333
+ {
1334
+ "epoch": 0.93,
1335
+ "learning_rate": 8.625415487584894e-05,
1336
+ "loss": 1.717,
1337
+ "step": 208
1338
+ },
1339
+ {
1340
+ "epoch": 0.93,
1341
+ "learning_rate": 8.572201682107032e-05,
1342
+ "loss": 1.8032,
1343
+ "step": 209
1344
+ },
1345
+ {
1346
+ "epoch": 0.94,
1347
+ "learning_rate": 8.518932716389221e-05,
1348
+ "loss": 1.8317,
1349
+ "step": 210
1350
+ },
1351
+ {
1352
+ "epoch": 0.94,
1353
+ "learning_rate": 8.465611330894356e-05,
1354
+ "loss": 1.7089,
1355
+ "step": 211
1356
+ },
1357
+ {
1358
+ "epoch": 0.94,
1359
+ "learning_rate": 8.412240268782118e-05,
1360
+ "loss": 1.8331,
1361
+ "step": 212
1362
+ },
1363
+ {
1364
+ "epoch": 0.95,
1365
+ "learning_rate": 8.358822275767832e-05,
1366
+ "loss": 1.7454,
1367
+ "step": 213
1368
+ },
1369
+ {
1370
+ "epoch": 0.95,
1371
+ "learning_rate": 8.305360099981222e-05,
1372
+ "loss": 1.7651,
1373
+ "step": 214
1374
+ },
1375
+ {
1376
+ "epoch": 0.96,
1377
+ "learning_rate": 8.251856491825029e-05,
1378
+ "loss": 1.6152,
1379
+ "step": 215
1380
+ },
1381
+ {
1382
+ "epoch": 0.96,
1383
+ "learning_rate": 8.198314203833513e-05,
1384
+ "loss": 1.7234,
1385
+ "step": 216
1386
+ },
1387
+ {
1388
+ "epoch": 0.97,
1389
+ "learning_rate": 8.144735990530849e-05,
1390
+ "loss": 1.811,
1391
+ "step": 217
1392
+ },
1393
+ {
1394
+ "epoch": 0.97,
1395
+ "learning_rate": 8.091124608289415e-05,
1396
+ "loss": 1.8182,
1397
+ "step": 218
1398
+ },
1399
+ {
1400
+ "epoch": 0.98,
1401
+ "learning_rate": 8.03748281518799e-05,
1402
+ "loss": 1.7904,
1403
+ "step": 219
1404
+ },
1405
+ {
1406
+ "epoch": 0.98,
1407
+ "learning_rate": 7.983813370869873e-05,
1408
+ "loss": 1.7279,
1409
+ "step": 220
1410
+ },
1411
+ {
1412
+ "epoch": 0.98,
1413
+ "eval_loss": 1.820069670677185,
1414
+ "eval_runtime": 38.6648,
1415
+ "eval_samples_per_second": 0.595,
1416
+ "eval_steps_per_second": 0.31,
1417
+ "step": 220
1418
+ },
1419
+ {
1420
+ "epoch": 0.98,
1421
+ "learning_rate": 7.930119036400885e-05,
1422
+ "loss": 1.7795,
1423
+ "step": 221
1424
+ },
1425
+ {
1426
+ "epoch": 0.99,
1427
+ "learning_rate": 7.876402574127354e-05,
1428
+ "loss": 1.718,
1429
+ "step": 222
1430
+ },
1431
+ {
1432
+ "epoch": 0.99,
1433
+ "learning_rate": 7.822666747533978e-05,
1434
+ "loss": 1.8449,
1435
+ "step": 223
1436
+ },
1437
+ {
1438
+ "epoch": 1.0,
1439
+ "learning_rate": 7.76891432110168e-05,
1440
+ "loss": 1.7184,
1441
+ "step": 224
1442
+ },
1443
+ {
1444
+ "epoch": 1.0,
1445
+ "learning_rate": 7.715148060165364e-05,
1446
+ "loss": 1.7338,
1447
+ "step": 225
1448
+ },
1449
+ {
1450
+ "epoch": 1.01,
1451
+ "learning_rate": 7.661370730771666e-05,
1452
+ "loss": 1.7738,
1453
+ "step": 226
1454
+ },
1455
+ {
1456
+ "epoch": 1.01,
1457
+ "learning_rate": 7.607585099536647e-05,
1458
+ "loss": 1.7365,
1459
+ "step": 227
1460
+ },
1461
+ {
1462
+ "epoch": 1.02,
1463
+ "learning_rate": 7.55379393350346e-05,
1464
+ "loss": 1.7216,
1465
+ "step": 228
1466
+ },
1467
+ {
1468
+ "epoch": 1.02,
1469
+ "learning_rate": 7.5e-05,
1470
+ "loss": 1.7728,
1471
+ "step": 229
1472
+ },
1473
+ {
1474
+ "epoch": 1.02,
1475
+ "learning_rate": 7.446206066496542e-05,
1476
+ "loss": 1.6894,
1477
+ "step": 230
1478
+ },
1479
+ {
1480
+ "epoch": 1.03,
1481
+ "learning_rate": 7.392414900463353e-05,
1482
+ "loss": 1.7418,
1483
+ "step": 231
1484
+ },
1485
+ {
1486
+ "epoch": 1.03,
1487
+ "learning_rate": 7.338629269228332e-05,
1488
+ "loss": 1.7215,
1489
+ "step": 232
1490
+ },
1491
+ {
1492
+ "epoch": 1.04,
1493
+ "learning_rate": 7.284851939834636e-05,
1494
+ "loss": 1.7766,
1495
+ "step": 233
1496
+ },
1497
+ {
1498
+ "epoch": 1.04,
1499
+ "learning_rate": 7.23108567889832e-05,
1500
+ "loss": 1.7296,
1501
+ "step": 234
1502
+ },
1503
+ {
1504
+ "epoch": 1.05,
1505
+ "learning_rate": 7.17733325246602e-05,
1506
+ "loss": 1.7249,
1507
+ "step": 235
1508
+ },
1509
+ {
1510
+ "epoch": 1.05,
1511
+ "learning_rate": 7.123597425872646e-05,
1512
+ "loss": 1.7242,
1513
+ "step": 236
1514
+ },
1515
+ {
1516
+ "epoch": 1.06,
1517
+ "learning_rate": 7.069880963599114e-05,
1518
+ "loss": 1.7759,
1519
+ "step": 237
1520
+ },
1521
+ {
1522
+ "epoch": 1.06,
1523
+ "learning_rate": 7.016186629130127e-05,
1524
+ "loss": 1.7882,
1525
+ "step": 238
1526
+ },
1527
+ {
1528
+ "epoch": 1.06,
1529
+ "learning_rate": 6.962517184812007e-05,
1530
+ "loss": 1.699,
1531
+ "step": 239
1532
+ },
1533
+ {
1534
+ "epoch": 1.07,
1535
+ "learning_rate": 6.908875391710585e-05,
1536
+ "loss": 1.7605,
1537
+ "step": 240
1538
+ },
1539
+ {
1540
+ "epoch": 1.07,
1541
+ "eval_loss": 1.8224544525146484,
1542
+ "eval_runtime": 38.6838,
1543
+ "eval_samples_per_second": 0.595,
1544
+ "eval_steps_per_second": 0.31,
1545
+ "step": 240
1546
+ },
1547
+ {
1548
+ "epoch": 1.07,
1549
+ "learning_rate": 6.855264009469152e-05,
1550
+ "loss": 1.7519,
1551
+ "step": 241
1552
+ },
1553
+ {
1554
+ "epoch": 1.08,
1555
+ "learning_rate": 6.801685796166487e-05,
1556
+ "loss": 1.711,
1557
+ "step": 242
1558
+ },
1559
+ {
1560
+ "epoch": 1.08,
1561
+ "learning_rate": 6.74814350817497e-05,
1562
+ "loss": 1.6439,
1563
+ "step": 243
1564
+ },
1565
+ {
1566
+ "epoch": 1.09,
1567
+ "learning_rate": 6.694639900018777e-05,
1568
+ "loss": 1.7515,
1569
+ "step": 244
1570
+ },
1571
+ {
1572
+ "epoch": 1.09,
1573
+ "learning_rate": 6.641177724232169e-05,
1574
+ "loss": 1.7462,
1575
+ "step": 245
1576
+ },
1577
+ {
1578
+ "epoch": 1.1,
1579
+ "learning_rate": 6.587759731217884e-05,
1580
+ "loss": 1.6464,
1581
+ "step": 246
1582
+ },
1583
+ {
1584
+ "epoch": 1.1,
1585
+ "learning_rate": 6.534388669105642e-05,
1586
+ "loss": 1.7231,
1587
+ "step": 247
1588
+ },
1589
+ {
1590
+ "epoch": 1.1,
1591
+ "learning_rate": 6.481067283610779e-05,
1592
+ "loss": 1.7846,
1593
+ "step": 248
1594
+ },
1595
+ {
1596
+ "epoch": 1.11,
1597
+ "learning_rate": 6.427798317892968e-05,
1598
+ "loss": 1.7784,
1599
+ "step": 249
1600
+ },
1601
+ {
1602
+ "epoch": 1.11,
1603
+ "learning_rate": 6.374584512415105e-05,
1604
+ "loss": 1.7011,
1605
+ "step": 250
1606
+ },
1607
+ {
1608
+ "epoch": 1.12,
1609
+ "learning_rate": 6.32142860480233e-05,
1610
+ "loss": 1.7109,
1611
+ "step": 251
1612
+ },
1613
+ {
1614
+ "epoch": 1.12,
1615
+ "learning_rate": 6.268333329701184e-05,
1616
+ "loss": 1.782,
1617
+ "step": 252
1618
+ },
1619
+ {
1620
+ "epoch": 1.13,
1621
+ "learning_rate": 6.215301418638918e-05,
1622
+ "loss": 1.6298,
1623
+ "step": 253
1624
+ },
1625
+ {
1626
+ "epoch": 1.13,
1627
+ "learning_rate": 6.162335599882973e-05,
1628
+ "loss": 1.6542,
1629
+ "step": 254
1630
+ },
1631
+ {
1632
+ "epoch": 1.14,
1633
+ "learning_rate": 6.109438598300616e-05,
1634
+ "loss": 1.7073,
1635
+ "step": 255
1636
+ },
1637
+ {
1638
+ "epoch": 1.14,
1639
+ "learning_rate": 6.0566131352187755e-05,
1640
+ "loss": 1.6676,
1641
+ "step": 256
1642
+ },
1643
+ {
1644
+ "epoch": 1.14,
1645
+ "learning_rate": 6.00386192828401e-05,
1646
+ "loss": 1.7513,
1647
+ "step": 257
1648
+ },
1649
+ {
1650
+ "epoch": 1.15,
1651
+ "learning_rate": 5.9511876913227206e-05,
1652
+ "loss": 1.7061,
1653
+ "step": 258
1654
+ },
1655
+ {
1656
+ "epoch": 1.15,
1657
+ "learning_rate": 5.898593134201529e-05,
1658
+ "loss": 1.775,
1659
+ "step": 259
1660
+ },
1661
+ {
1662
+ "epoch": 1.16,
1663
+ "learning_rate": 5.846080962687869e-05,
1664
+ "loss": 1.7492,
1665
+ "step": 260
1666
+ },
1667
+ {
1668
+ "epoch": 1.16,
1669
+ "eval_loss": 1.8244727849960327,
1670
+ "eval_runtime": 38.6719,
1671
+ "eval_samples_per_second": 0.595,
1672
+ "eval_steps_per_second": 0.31,
1673
+ "step": 260
1674
+ },
1675
+ {
1676
+ "epoch": 1.16,
1677
+ "learning_rate": 5.793653878310779e-05,
1678
+ "loss": 1.7759,
1679
+ "step": 261
1680
+ },
1681
+ {
1682
+ "epoch": 1.17,
1683
+ "learning_rate": 5.741314578221928e-05,
1684
+ "loss": 1.6873,
1685
+ "step": 262
1686
+ },
1687
+ {
1688
+ "epoch": 1.17,
1689
+ "learning_rate": 5.689065755056847e-05,
1690
+ "loss": 1.7294,
1691
+ "step": 263
1692
+ },
1693
+ {
1694
+ "epoch": 1.18,
1695
+ "learning_rate": 5.636910096796424e-05,
1696
+ "loss": 1.5988,
1697
+ "step": 264
1698
+ },
1699
+ {
1700
+ "epoch": 1.18,
1701
+ "learning_rate": 5.584850286628597e-05,
1702
+ "loss": 1.7398,
1703
+ "step": 265
1704
+ },
1705
+ {
1706
+ "epoch": 1.18,
1707
+ "learning_rate": 5.532889002810331e-05,
1708
+ "loss": 1.7605,
1709
+ "step": 266
1710
+ },
1711
+ {
1712
+ "epoch": 1.19,
1713
+ "learning_rate": 5.4810289185298204e-05,
1714
+ "loss": 1.7791,
1715
+ "step": 267
1716
+ },
1717
+ {
1718
+ "epoch": 1.19,
1719
+ "learning_rate": 5.4292727017689826e-05,
1720
+ "loss": 1.7165,
1721
+ "step": 268
1722
+ },
1723
+ {
1724
+ "epoch": 1.2,
1725
+ "learning_rate": 5.377623015166182e-05,
1726
+ "loss": 1.7378,
1727
+ "step": 269
1728
+ },
1729
+ {
1730
+ "epoch": 1.2,
1731
+ "learning_rate": 5.326082515879258e-05,
1732
+ "loss": 1.6172,
1733
+ "step": 270
1734
+ },
1735
+ {
1736
+ "epoch": 1.21,
1737
+ "learning_rate": 5.2746538554488216e-05,
1738
+ "loss": 1.7141,
1739
+ "step": 271
1740
+ },
1741
+ {
1742
+ "epoch": 1.21,
1743
+ "learning_rate": 5.2233396796618606e-05,
1744
+ "loss": 1.7663,
1745
+ "step": 272
1746
+ },
1747
+ {
1748
+ "epoch": 1.22,
1749
+ "learning_rate": 5.172142628415599e-05,
1750
+ "loss": 1.7631,
1751
+ "step": 273
1752
+ },
1753
+ {
1754
+ "epoch": 1.22,
1755
+ "learning_rate": 5.121065335581705e-05,
1756
+ "loss": 1.6739,
1757
+ "step": 274
1758
+ },
1759
+ {
1760
+ "epoch": 1.22,
1761
+ "learning_rate": 5.070110428870779e-05,
1762
+ "loss": 1.776,
1763
+ "step": 275
1764
+ },
1765
+ {
1766
+ "epoch": 1.23,
1767
+ "learning_rate": 5.01928052969718e-05,
1768
+ "loss": 1.6411,
1769
+ "step": 276
1770
+ },
1771
+ {
1772
+ "epoch": 1.23,
1773
+ "learning_rate": 4.9685782530441504e-05,
1774
+ "loss": 1.7257,
1775
+ "step": 277
1776
+ },
1777
+ {
1778
+ "epoch": 1.24,
1779
+ "learning_rate": 4.9180062073293e-05,
1780
+ "loss": 1.7275,
1781
+ "step": 278
1782
+ },
1783
+ {
1784
+ "epoch": 1.24,
1785
+ "learning_rate": 4.867566994270401e-05,
1786
+ "loss": 1.7533,
1787
+ "step": 279
1788
+ },
1789
+ {
1790
+ "epoch": 1.25,
1791
+ "learning_rate": 4.817263208751558e-05,
1792
+ "loss": 1.7823,
1793
+ "step": 280
1794
+ },
1795
+ {
1796
+ "epoch": 1.25,
1797
+ "eval_loss": 1.8235349655151367,
1798
+ "eval_runtime": 38.6582,
1799
+ "eval_samples_per_second": 0.595,
1800
+ "eval_steps_per_second": 0.31,
1801
+ "step": 280
1802
+ },
1803
+ {
1804
+ "epoch": 1.25,
1805
+ "learning_rate": 4.767097438689694e-05,
1806
+ "loss": 1.7844,
1807
+ "step": 281
1808
+ },
1809
+ {
1810
+ "epoch": 1.26,
1811
+ "learning_rate": 4.7170722649014194e-05,
1812
+ "loss": 1.7882,
1813
+ "step": 282
1814
+ },
1815
+ {
1816
+ "epoch": 1.26,
1817
+ "learning_rate": 4.6671902609702625e-05,
1818
+ "loss": 1.681,
1819
+ "step": 283
1820
+ },
1821
+ {
1822
+ "epoch": 1.27,
1823
+ "learning_rate": 4.617453993114276e-05,
1824
+ "loss": 1.7391,
1825
+ "step": 284
1826
+ },
1827
+ {
1828
+ "epoch": 1.27,
1829
+ "learning_rate": 4.567866020053999e-05,
1830
+ "loss": 1.7623,
1831
+ "step": 285
1832
+ },
1833
+ {
1834
+ "epoch": 1.27,
1835
+ "learning_rate": 4.5184288928808314e-05,
1836
+ "loss": 1.674,
1837
+ "step": 286
1838
+ },
1839
+ {
1840
+ "epoch": 1.28,
1841
+ "learning_rate": 4.469145154925794e-05,
1842
+ "loss": 1.8447,
1843
+ "step": 287
1844
+ },
1845
+ {
1846
+ "epoch": 1.28,
1847
+ "learning_rate": 4.420017341628682e-05,
1848
+ "loss": 1.7045,
1849
+ "step": 288
1850
+ },
1851
+ {
1852
+ "epoch": 1.29,
1853
+ "learning_rate": 4.371047980407625e-05,
1854
+ "loss": 1.6558,
1855
+ "step": 289
1856
+ },
1857
+ {
1858
+ "epoch": 1.29,
1859
+ "learning_rate": 4.3222395905290594e-05,
1860
+ "loss": 1.7276,
1861
+ "step": 290
1862
+ },
1863
+ {
1864
+ "epoch": 1.3,
1865
+ "learning_rate": 4.273594682978133e-05,
1866
+ "loss": 1.7751,
1867
+ "step": 291
1868
+ },
1869
+ {
1870
+ "epoch": 1.3,
1871
+ "learning_rate": 4.22511576032952e-05,
1872
+ "loss": 1.7659,
1873
+ "step": 292
1874
+ },
1875
+ {
1876
+ "epoch": 1.31,
1877
+ "learning_rate": 4.17680531661867e-05,
1878
+ "loss": 1.6638,
1879
+ "step": 293
1880
+ },
1881
+ {
1882
+ "epoch": 1.31,
1883
+ "learning_rate": 4.128665837213506e-05,
1884
+ "loss": 1.7587,
1885
+ "step": 294
1886
+ },
1887
+ {
1888
+ "epoch": 1.31,
1889
+ "learning_rate": 4.08069979868656e-05,
1890
+ "loss": 1.6908,
1891
+ "step": 295
1892
+ },
1893
+ {
1894
+ "epoch": 1.32,
1895
+ "learning_rate": 4.0329096686875635e-05,
1896
+ "loss": 1.7529,
1897
+ "step": 296
1898
+ },
1899
+ {
1900
+ "epoch": 1.32,
1901
+ "learning_rate": 3.985297905816502e-05,
1902
+ "loss": 1.8126,
1903
+ "step": 297
1904
+ },
1905
+ {
1906
+ "epoch": 1.33,
1907
+ "learning_rate": 3.937866959497125e-05,
1908
+ "loss": 1.7422,
1909
+ "step": 298
1910
+ },
1911
+ {
1912
+ "epoch": 1.33,
1913
+ "learning_rate": 3.890619269850931e-05,
1914
+ "loss": 1.6809,
1915
+ "step": 299
1916
+ },
1917
+ {
1918
+ "epoch": 1.34,
1919
+ "learning_rate": 3.84355726757165e-05,
1920
+ "loss": 1.6247,
1921
+ "step": 300
1922
+ },
1923
+ {
1924
+ "epoch": 1.34,
1925
+ "eval_loss": 1.8247207403182983,
1926
+ "eval_runtime": 38.6791,
1927
+ "eval_samples_per_second": 0.595,
1928
+ "eval_steps_per_second": 0.31,
1929
+ "step": 300
1930
+ },
1931
+ {
1932
+ "epoch": 1.34,
1933
+ "learning_rate": 3.796683373800171e-05,
1934
+ "loss": 1.7724,
1935
+ "step": 301
1936
+ },
1937
+ {
1938
+ "epoch": 1.35,
1939
+ "learning_rate": 3.750000000000001e-05,
1940
+ "loss": 1.6507,
1941
+ "step": 302
1942
+ },
1943
+ {
1944
+ "epoch": 1.35,
1945
+ "learning_rate": 3.7035095478331974e-05,
1946
+ "loss": 1.7188,
1947
+ "step": 303
1948
+ },
1949
+ {
1950
+ "epoch": 1.35,
1951
+ "learning_rate": 3.6572144090368226e-05,
1952
+ "loss": 1.6954,
1953
+ "step": 304
1954
+ },
1955
+ {
1956
+ "epoch": 1.36,
1957
+ "learning_rate": 3.6111169652998864e-05,
1958
+ "loss": 1.7261,
1959
+ "step": 305
1960
+ },
1961
+ {
1962
+ "epoch": 1.36,
1963
+ "learning_rate": 3.5652195881408265e-05,
1964
+ "loss": 1.7244,
1965
+ "step": 306
1966
+ },
1967
+ {
1968
+ "epoch": 1.37,
1969
+ "learning_rate": 3.519524638785498e-05,
1970
+ "loss": 1.774,
1971
+ "step": 307
1972
+ },
1973
+ {
1974
+ "epoch": 1.37,
1975
+ "learning_rate": 3.474034468045714e-05,
1976
+ "loss": 1.6855,
1977
+ "step": 308
1978
+ },
1979
+ {
1980
+ "epoch": 1.38,
1981
+ "learning_rate": 3.428751416198276e-05,
1982
+ "loss": 1.705,
1983
+ "step": 309
1984
+ },
1985
+ {
1986
+ "epoch": 1.38,
1987
+ "learning_rate": 3.383677812864608e-05,
1988
+ "loss": 1.6418,
1989
+ "step": 310
1990
+ },
1991
+ {
1992
+ "epoch": 1.39,
1993
+ "learning_rate": 3.338815976890887e-05,
1994
+ "loss": 1.7448,
1995
+ "step": 311
1996
+ },
1997
+ {
1998
+ "epoch": 1.39,
1999
+ "learning_rate": 3.2941682162287665e-05,
2000
+ "loss": 1.7697,
2001
+ "step": 312
2002
+ },
2003
+ {
2004
+ "epoch": 1.39,
2005
+ "learning_rate": 3.2497368278166186e-05,
2006
+ "loss": 1.5922,
2007
+ "step": 313
2008
+ },
2009
+ {
2010
+ "epoch": 1.4,
2011
+ "learning_rate": 3.2055240974613836e-05,
2012
+ "loss": 1.6911,
2013
+ "step": 314
2014
+ },
2015
+ {
2016
+ "epoch": 1.4,
2017
+ "learning_rate": 3.161532299720968e-05,
2018
+ "loss": 1.711,
2019
+ "step": 315
2020
+ },
2021
+ {
2022
+ "epoch": 1.41,
2023
+ "learning_rate": 3.117763697787236e-05,
2024
+ "loss": 1.6848,
2025
+ "step": 316
2026
+ },
2027
+ {
2028
+ "epoch": 1.41,
2029
+ "learning_rate": 3.074220543369566e-05,
2030
+ "loss": 1.7308,
2031
+ "step": 317
2032
+ },
2033
+ {
2034
+ "epoch": 1.42,
2035
+ "learning_rate": 3.0309050765790162e-05,
2036
+ "loss": 1.6737,
2037
+ "step": 318
2038
+ },
2039
+ {
2040
+ "epoch": 1.42,
2041
+ "learning_rate": 2.9878195258130788e-05,
2042
+ "loss": 1.7524,
2043
+ "step": 319
2044
+ },
2045
+ {
2046
+ "epoch": 1.43,
2047
+ "learning_rate": 2.94496610764105e-05,
2048
+ "loss": 1.6858,
2049
+ "step": 320
2050
+ },
2051
+ {
2052
+ "epoch": 1.43,
2053
+ "eval_loss": 1.824588418006897,
2054
+ "eval_runtime": 38.6882,
2055
+ "eval_samples_per_second": 0.594,
2056
+ "eval_steps_per_second": 0.31,
2057
+ "step": 320
2058
+ },
2059
+ {
2060
+ "epoch": 1.43,
2061
+ "learning_rate": 2.902347026689968e-05,
2062
+ "loss": 1.7414,
2063
+ "step": 321
2064
+ },
2065
+ {
2066
+ "epoch": 1.43,
2067
+ "learning_rate": 2.8599644755312262e-05,
2068
+ "loss": 1.7029,
2069
+ "step": 322
2070
+ },
2071
+ {
2072
+ "epoch": 1.44,
2073
+ "learning_rate": 2.817820634567754e-05,
2074
+ "loss": 1.7198,
2075
+ "step": 323
2076
+ },
2077
+ {
2078
+ "epoch": 1.44,
2079
+ "learning_rate": 2.775917671921858e-05,
2080
+ "loss": 1.6937,
2081
+ "step": 324
2082
+ },
2083
+ {
2084
+ "epoch": 1.45,
2085
+ "learning_rate": 2.7342577433236697e-05,
2086
+ "loss": 1.7822,
2087
+ "step": 325
2088
+ },
2089
+ {
2090
+ "epoch": 1.45,
2091
+ "learning_rate": 2.692842992000247e-05,
2092
+ "loss": 1.6426,
2093
+ "step": 326
2094
+ },
2095
+ {
2096
+ "epoch": 1.46,
2097
+ "learning_rate": 2.6516755485653134e-05,
2098
+ "loss": 1.7319,
2099
+ "step": 327
2100
+ },
2101
+ {
2102
+ "epoch": 1.46,
2103
+ "learning_rate": 2.6107575309096555e-05,
2104
+ "loss": 1.7638,
2105
+ "step": 328
2106
+ },
2107
+ {
2108
+ "epoch": 1.47,
2109
+ "learning_rate": 2.57009104409215e-05,
2110
+ "loss": 1.6436,
2111
+ "step": 329
2112
+ },
2113
+ {
2114
+ "epoch": 1.47,
2115
+ "learning_rate": 2.5296781802314794e-05,
2116
+ "loss": 1.6292,
2117
+ "step": 330
2118
+ },
2119
+ {
2120
+ "epoch": 1.47,
2121
+ "learning_rate": 2.489521018398497e-05,
2122
+ "loss": 1.6694,
2123
+ "step": 331
2124
+ },
2125
+ {
2126
+ "epoch": 1.48,
2127
+ "learning_rate": 2.4496216245092746e-05,
2128
+ "loss": 1.6619,
2129
+ "step": 332
2130
+ },
2131
+ {
2132
+ "epoch": 1.48,
2133
+ "learning_rate": 2.4099820512188095e-05,
2134
+ "loss": 1.6913,
2135
+ "step": 333
2136
+ },
2137
+ {
2138
+ "epoch": 1.49,
2139
+ "learning_rate": 2.3706043378154228e-05,
2140
+ "loss": 1.6997,
2141
+ "step": 334
2142
+ },
2143
+ {
2144
+ "epoch": 1.49,
2145
+ "learning_rate": 2.3314905101158583e-05,
2146
+ "loss": 1.6753,
2147
+ "step": 335
2148
+ },
2149
+ {
2150
+ "epoch": 1.5,
2151
+ "learning_rate": 2.2926425803610623e-05,
2152
+ "loss": 1.7086,
2153
+ "step": 336
2154
+ },
2155
+ {
2156
+ "epoch": 1.5,
2157
+ "learning_rate": 2.2540625471126482e-05,
2158
+ "loss": 1.7095,
2159
+ "step": 337
2160
+ },
2161
+ {
2162
+ "epoch": 1.51,
2163
+ "learning_rate": 2.2157523951500897e-05,
2164
+ "loss": 1.6925,
2165
+ "step": 338
2166
+ },
2167
+ {
2168
+ "epoch": 1.51,
2169
+ "learning_rate": 2.1777140953686093e-05,
2170
+ "loss": 1.7279,
2171
+ "step": 339
2172
+ },
2173
+ {
2174
+ "epoch": 1.51,
2175
+ "learning_rate": 2.139949604677793e-05,
2176
+ "loss": 1.6561,
2177
+ "step": 340
2178
+ },
2179
+ {
2180
+ "epoch": 1.51,
2181
+ "eval_loss": 1.8239541053771973,
2182
+ "eval_runtime": 38.6911,
2183
+ "eval_samples_per_second": 0.594,
2184
+ "eval_steps_per_second": 0.31,
2185
+ "step": 340
2186
+ },
2187
+ {
2188
+ "epoch": 1.52,
2189
+ "learning_rate": 2.1024608659008967e-05,
2190
+ "loss": 1.8246,
2191
+ "step": 341
2192
+ },
2193
+ {
2194
+ "epoch": 1.52,
2195
+ "learning_rate": 2.065249807674913e-05,
2196
+ "loss": 1.6902,
2197
+ "step": 342
2198
+ },
2199
+ {
2200
+ "epoch": 1.53,
2201
+ "learning_rate": 2.028318344351342e-05,
2202
+ "loss": 1.6771,
2203
+ "step": 343
2204
+ },
2205
+ {
2206
+ "epoch": 1.53,
2207
+ "learning_rate": 1.9916683758977156e-05,
2208
+ "loss": 1.6901,
2209
+ "step": 344
2210
+ },
2211
+ {
2212
+ "epoch": 1.54,
2213
+ "learning_rate": 1.9553017877998395e-05,
2214
+ "loss": 1.6676,
2215
+ "step": 345
2216
+ },
2217
+ {
2218
+ "epoch": 1.54,
2219
+ "learning_rate": 1.919220450964797e-05,
2220
+ "loss": 1.6908,
2221
+ "step": 346
2222
+ },
2223
+ {
2224
+ "epoch": 1.55,
2225
+ "learning_rate": 1.8834262216247047e-05,
2226
+ "loss": 1.7272,
2227
+ "step": 347
2228
+ },
2229
+ {
2230
+ "epoch": 1.55,
2231
+ "learning_rate": 1.8479209412412175e-05,
2232
+ "loss": 1.748,
2233
+ "step": 348
2234
+ },
2235
+ {
2236
+ "epoch": 1.55,
2237
+ "learning_rate": 1.8127064364107825e-05,
2238
+ "loss": 1.6607,
2239
+ "step": 349
2240
+ },
2241
+ {
2242
+ "epoch": 1.56,
2243
+ "learning_rate": 1.7777845187706757e-05,
2244
+ "loss": 1.7064,
2245
+ "step": 350
2246
+ },
2247
+ {
2248
+ "epoch": 1.56,
2249
+ "learning_rate": 1.7431569849058016e-05,
2250
+ "loss": 1.784,
2251
+ "step": 351
2252
+ },
2253
+ {
2254
+ "epoch": 1.57,
2255
+ "learning_rate": 1.7088256162562682e-05,
2256
+ "loss": 1.7271,
2257
+ "step": 352
2258
+ },
2259
+ {
2260
+ "epoch": 1.57,
2261
+ "learning_rate": 1.6747921790257308e-05,
2262
+ "loss": 1.71,
2263
+ "step": 353
2264
+ },
2265
+ {
2266
+ "epoch": 1.58,
2267
+ "learning_rate": 1.6410584240905353e-05,
2268
+ "loss": 1.6496,
2269
+ "step": 354
2270
+ },
2271
+ {
2272
+ "epoch": 1.58,
2273
+ "learning_rate": 1.607626086909641e-05,
2274
+ "loss": 1.744,
2275
+ "step": 355
2276
+ },
2277
+ {
2278
+ "epoch": 1.59,
2279
+ "learning_rate": 1.5744968874353444e-05,
2280
+ "loss": 1.679,
2281
+ "step": 356
2282
+ },
2283
+ {
2284
+ "epoch": 1.59,
2285
+ "learning_rate": 1.5416725300247833e-05,
2286
+ "loss": 1.7658,
2287
+ "step": 357
2288
+ },
2289
+ {
2290
+ "epoch": 1.59,
2291
+ "learning_rate": 1.5091547033522647e-05,
2292
+ "loss": 1.6645,
2293
+ "step": 358
2294
+ },
2295
+ {
2296
+ "epoch": 1.6,
2297
+ "learning_rate": 1.4769450803223798e-05,
2298
+ "loss": 1.6668,
2299
+ "step": 359
2300
+ },
2301
+ {
2302
+ "epoch": 1.6,
2303
+ "learning_rate": 1.445045317983956e-05,
2304
+ "loss": 1.7093,
2305
+ "step": 360
2306
+ },
2307
+ {
2308
+ "epoch": 1.6,
2309
+ "eval_loss": 1.8239744901657104,
2310
+ "eval_runtime": 38.6944,
2311
+ "eval_samples_per_second": 0.594,
2312
+ "eval_steps_per_second": 0.31,
2313
+ "step": 360
2314
+ },
2315
+ {
2316
+ "epoch": 1.61,
2317
+ "learning_rate": 1.4134570574447931e-05,
2318
+ "loss": 1.7667,
2319
+ "step": 361
2320
+ },
2321
+ {
2322
+ "epoch": 1.61,
2323
+ "learning_rate": 1.3821819237872431e-05,
2324
+ "loss": 1.8016,
2325
+ "step": 362
2326
+ },
2327
+ {
2328
+ "epoch": 1.62,
2329
+ "learning_rate": 1.3512215259846012e-05,
2330
+ "loss": 1.6527,
2331
+ "step": 363
2332
+ },
2333
+ {
2334
+ "epoch": 1.62,
2335
+ "learning_rate": 1.3205774568183437e-05,
2336
+ "loss": 1.7123,
2337
+ "step": 364
2338
+ },
2339
+ {
2340
+ "epoch": 1.63,
2341
+ "learning_rate": 1.290251292796167e-05,
2342
+ "loss": 1.7391,
2343
+ "step": 365
2344
+ },
2345
+ {
2346
+ "epoch": 1.63,
2347
+ "learning_rate": 1.2602445940708975e-05,
2348
+ "loss": 1.7231,
2349
+ "step": 366
2350
+ },
2351
+ {
2352
+ "epoch": 1.63,
2353
+ "learning_rate": 1.2305589043602222e-05,
2354
+ "loss": 1.6102,
2355
+ "step": 367
2356
+ },
2357
+ {
2358
+ "epoch": 1.64,
2359
+ "learning_rate": 1.2011957508672765e-05,
2360
+ "loss": 1.7098,
2361
+ "step": 368
2362
+ },
2363
+ {
2364
+ "epoch": 1.64,
2365
+ "learning_rate": 1.1721566442020678e-05,
2366
+ "loss": 1.7353,
2367
+ "step": 369
2368
+ },
2369
+ {
2370
+ "epoch": 1.65,
2371
+ "learning_rate": 1.1434430783037683e-05,
2372
+ "loss": 1.697,
2373
+ "step": 370
2374
+ },
2375
+ {
2376
+ "epoch": 1.65,
2377
+ "learning_rate": 1.1150565303638478e-05,
2378
+ "loss": 1.7111,
2379
+ "step": 371
2380
+ },
2381
+ {
2382
+ "epoch": 1.66,
2383
+ "learning_rate": 1.0869984607500966e-05,
2384
+ "loss": 1.7482,
2385
+ "step": 372
2386
+ },
2387
+ {
2388
+ "epoch": 1.66,
2389
+ "learning_rate": 1.0592703129314783e-05,
2390
+ "loss": 1.7084,
2391
+ "step": 373
2392
+ },
2393
+ {
2394
+ "epoch": 1.67,
2395
+ "learning_rate": 1.0318735134038775e-05,
2396
+ "loss": 1.6504,
2397
+ "step": 374
2398
+ },
2399
+ {
2400
+ "epoch": 1.67,
2401
+ "learning_rate": 1.0048094716167095e-05,
2402
+ "loss": 1.7409,
2403
+ "step": 375
2404
+ },
2405
+ {
2406
+ "epoch": 1.67,
2407
+ "learning_rate": 9.780795799004174e-06,
2408
+ "loss": 1.68,
2409
+ "step": 376
2410
+ },
2411
+ {
2412
+ "epoch": 1.68,
2413
+ "learning_rate": 9.51685213394831e-06,
2414
+ "loss": 1.7304,
2415
+ "step": 377
2416
+ },
2417
+ {
2418
+ "epoch": 1.68,
2419
+ "learning_rate": 9.256277299784303e-06,
2420
+ "loss": 1.6883,
2421
+ "step": 378
2422
+ },
2423
+ {
2424
+ "epoch": 1.69,
2425
+ "learning_rate": 8.999084701984826e-06,
2426
+ "loss": 1.7648,
2427
+ "step": 379
2428
+ },
2429
+ {
2430
+ "epoch": 1.69,
2431
+ "learning_rate": 8.745287572020865e-06,
2432
+ "loss": 1.6844,
2433
+ "step": 380
2434
+ },
2435
+ {
2436
+ "epoch": 1.69,
2437
+ "eval_loss": 1.8234540224075317,
2438
+ "eval_runtime": 38.6726,
2439
+ "eval_samples_per_second": 0.595,
2440
+ "eval_steps_per_second": 0.31,
2441
+ "step": 380
2442
+ },
2443
+ {
2444
+ "epoch": 1.7,
2445
+ "learning_rate": 8.494898966680893e-06,
2446
+ "loss": 1.6674,
2447
+ "step": 381
2448
+ },
2449
+ {
2450
+ "epoch": 1.7,
2451
+ "learning_rate": 8.247931767399249e-06,
2452
+ "loss": 1.7195,
2453
+ "step": 382
2454
+ },
2455
+ {
2456
+ "epoch": 1.71,
2457
+ "learning_rate": 8.004398679593382e-06,
2458
+ "loss": 1.74,
2459
+ "step": 383
2460
+ },
2461
+ {
2462
+ "epoch": 1.71,
2463
+ "learning_rate": 7.76431223201025e-06,
2464
+ "loss": 1.6652,
2465
+ "step": 384
2466
+ },
2467
+ {
2468
+ "epoch": 1.71,
2469
+ "learning_rate": 7.5276847760817545e-06,
2470
+ "loss": 1.7028,
2471
+ "step": 385
2472
+ },
2473
+ {
2474
+ "epoch": 1.72,
2475
+ "learning_rate": 7.2945284852893025e-06,
2476
+ "loss": 1.741,
2477
+ "step": 386
2478
+ },
2479
+ {
2480
+ "epoch": 1.72,
2481
+ "learning_rate": 7.06485535453753e-06,
2482
+ "loss": 1.8208,
2483
+ "step": 387
2484
+ },
2485
+ {
2486
+ "epoch": 1.73,
2487
+ "learning_rate": 6.838677199537279e-06,
2488
+ "loss": 1.7236,
2489
+ "step": 388
2490
+ },
2491
+ {
2492
+ "epoch": 1.73,
2493
+ "learning_rate": 6.616005656197629e-06,
2494
+ "loss": 1.7234,
2495
+ "step": 389
2496
+ },
2497
+ {
2498
+ "epoch": 1.74,
2499
+ "learning_rate": 6.396852180027329e-06,
2500
+ "loss": 1.6614,
2501
+ "step": 390
2502
+ },
2503
+ {
2504
+ "epoch": 1.74,
2505
+ "learning_rate": 6.181228045545464e-06,
2506
+ "loss": 1.6615,
2507
+ "step": 391
2508
+ },
2509
+ {
2510
+ "epoch": 1.75,
2511
+ "learning_rate": 5.969144345701451e-06,
2512
+ "loss": 1.6185,
2513
+ "step": 392
2514
+ },
2515
+ {
2516
+ "epoch": 1.75,
2517
+ "learning_rate": 5.760611991304273e-06,
2518
+ "loss": 1.6449,
2519
+ "step": 393
2520
+ },
2521
+ {
2522
+ "epoch": 1.76,
2523
+ "learning_rate": 5.555641710461264e-06,
2524
+ "loss": 1.7494,
2525
+ "step": 394
2526
+ },
2527
+ {
2528
+ "epoch": 1.76,
2529
+ "learning_rate": 5.354244048026107e-06,
2530
+ "loss": 1.7365,
2531
+ "step": 395
2532
+ },
2533
+ {
2534
+ "epoch": 1.76,
2535
+ "learning_rate": 5.156429365056406e-06,
2536
+ "loss": 1.6616,
2537
+ "step": 396
2538
+ },
2539
+ {
2540
+ "epoch": 1.77,
2541
+ "learning_rate": 4.962207838280618e-06,
2542
+ "loss": 1.6828,
2543
+ "step": 397
2544
+ },
2545
+ {
2546
+ "epoch": 1.77,
2547
+ "learning_rate": 4.771589459574532e-06,
2548
+ "loss": 1.7014,
2549
+ "step": 398
2550
+ },
2551
+ {
2552
+ "epoch": 1.78,
2553
+ "learning_rate": 4.5845840354472e-06,
2554
+ "loss": 1.7321,
2555
+ "step": 399
2556
+ },
2557
+ {
2558
+ "epoch": 1.78,
2559
+ "learning_rate": 4.4012011865364685e-06,
2560
+ "loss": 1.6608,
2561
+ "step": 400
2562
+ },
2563
+ {
2564
+ "epoch": 1.78,
2565
+ "eval_loss": 1.8232544660568237,
2566
+ "eval_runtime": 38.7014,
2567
+ "eval_samples_per_second": 0.594,
2568
+ "eval_steps_per_second": 0.31,
2569
+ "step": 400
2570
+ },
2571
+ {
2572
+ "epoch": 1.79,
2573
+ "learning_rate": 4.221450347114e-06,
2574
+ "loss": 1.6729,
2575
+ "step": 401
2576
+ },
2577
+ {
2578
+ "epoch": 1.79,
2579
+ "learning_rate": 4.045340764599925e-06,
2580
+ "loss": 1.685,
2581
+ "step": 402
2582
+ },
2583
+ {
2584
+ "epoch": 1.8,
2585
+ "learning_rate": 3.872881499087127e-06,
2586
+ "loss": 1.773,
2587
+ "step": 403
2588
+ },
2589
+ {
2590
+ "epoch": 1.8,
2591
+ "learning_rate": 3.704081422875144e-06,
2592
+ "loss": 1.7053,
2593
+ "step": 404
2594
+ },
2595
+ {
2596
+ "epoch": 1.8,
2597
+ "learning_rate": 3.5389492200136706e-06,
2598
+ "loss": 1.7611,
2599
+ "step": 405
2600
+ },
2601
+ {
2602
+ "epoch": 1.81,
2603
+ "learning_rate": 3.377493385855862e-06,
2604
+ "loss": 1.7462,
2605
+ "step": 406
2606
+ },
2607
+ {
2608
+ "epoch": 1.81,
2609
+ "learning_rate": 3.219722226621238e-06,
2610
+ "loss": 1.6979,
2611
+ "step": 407
2612
+ },
2613
+ {
2614
+ "epoch": 1.82,
2615
+ "learning_rate": 3.065643858968403e-06,
2616
+ "loss": 1.7313,
2617
+ "step": 408
2618
+ },
2619
+ {
2620
+ "epoch": 1.82,
2621
+ "learning_rate": 2.915266209577452e-06,
2622
+ "loss": 1.6684,
2623
+ "step": 409
2624
+ },
2625
+ {
2626
+ "epoch": 1.83,
2627
+ "learning_rate": 2.7685970147421745e-06,
2628
+ "loss": 1.6645,
2629
+ "step": 410
2630
+ },
2631
+ {
2632
+ "epoch": 1.83,
2633
+ "learning_rate": 2.6256438199720784e-06,
2634
+ "loss": 1.7141,
2635
+ "step": 411
2636
+ },
2637
+ {
2638
+ "epoch": 1.84,
2639
+ "learning_rate": 2.4864139796041878e-06,
2640
+ "loss": 1.7645,
2641
+ "step": 412
2642
+ },
2643
+ {
2644
+ "epoch": 1.84,
2645
+ "learning_rate": 2.3509146564246905e-06,
2646
+ "loss": 1.7309,
2647
+ "step": 413
2648
+ },
2649
+ {
2650
+ "epoch": 1.84,
2651
+ "learning_rate": 2.2191528213004626e-06,
2652
+ "loss": 1.6788,
2653
+ "step": 414
2654
+ },
2655
+ {
2656
+ "epoch": 1.85,
2657
+ "learning_rate": 2.0911352528203943e-06,
2658
+ "loss": 1.7223,
2659
+ "step": 415
2660
+ },
2661
+ {
2662
+ "epoch": 1.85,
2663
+ "learning_rate": 1.9668685369467698e-06,
2664
+ "loss": 1.667,
2665
+ "step": 416
2666
+ },
2667
+ {
2668
+ "epoch": 1.86,
2669
+ "learning_rate": 1.8463590666763117e-06,
2670
+ "loss": 1.6427,
2671
+ "step": 417
2672
+ },
2673
+ {
2674
+ "epoch": 1.86,
2675
+ "learning_rate": 1.7296130417113725e-06,
2676
+ "loss": 1.7058,
2677
+ "step": 418
2678
+ },
2679
+ {
2680
+ "epoch": 1.87,
2681
+ "learning_rate": 1.616636468140986e-06,
2682
+ "loss": 1.675,
2683
+ "step": 419
2684
+ },
2685
+ {
2686
+ "epoch": 1.87,
2687
+ "learning_rate": 1.5074351581318422e-06,
2688
+ "loss": 1.7686,
2689
+ "step": 420
2690
+ },
2691
+ {
2692
+ "epoch": 1.87,
2693
+ "eval_loss": 1.8233102560043335,
2694
+ "eval_runtime": 38.6983,
2695
+ "eval_samples_per_second": 0.594,
2696
+ "eval_steps_per_second": 0.31,
2697
+ "step": 420
2698
+ },
2699
+ {
2700
+ "epoch": 1.88,
2701
+ "learning_rate": 1.4020147296293e-06,
2702
+ "loss": 1.6471,
2703
+ "step": 421
2704
+ },
2705
+ {
2706
+ "epoch": 1.88,
2707
+ "learning_rate": 1.3003806060683602e-06,
2708
+ "loss": 1.8298,
2709
+ "step": 422
2710
+ },
2711
+ {
2712
+ "epoch": 1.88,
2713
+ "learning_rate": 1.2025380160946479e-06,
2714
+ "loss": 1.648,
2715
+ "step": 423
2716
+ },
2717
+ {
2718
+ "epoch": 1.89,
2719
+ "learning_rate": 1.1084919932954518e-06,
2720
+ "loss": 1.6888,
2721
+ "step": 424
2722
+ },
2723
+ {
2724
+ "epoch": 1.89,
2725
+ "learning_rate": 1.0182473759407144e-06,
2726
+ "loss": 1.6362,
2727
+ "step": 425
2728
+ },
2729
+ {
2730
+ "epoch": 1.9,
2731
+ "learning_rate": 9.318088067341745e-07,
2732
+ "loss": 1.7624,
2733
+ "step": 426
2734
+ },
2735
+ {
2736
+ "epoch": 1.9,
2737
+ "learning_rate": 8.491807325744642e-07,
2738
+ "loss": 1.7206,
2739
+ "step": 427
2740
+ },
2741
+ {
2742
+ "epoch": 1.91,
2743
+ "learning_rate": 7.703674043264191e-07,
2744
+ "loss": 1.6097,
2745
+ "step": 428
2746
+ },
2747
+ {
2748
+ "epoch": 1.91,
2749
+ "learning_rate": 6.953728766023014e-07,
2750
+ "loss": 1.7506,
2751
+ "step": 429
2752
+ },
2753
+ {
2754
+ "epoch": 1.92,
2755
+ "learning_rate": 6.242010075532517e-07,
2756
+ "loss": 1.7781,
2757
+ "step": 430
2758
+ },
2759
+ {
2760
+ "epoch": 1.92,
2761
+ "learning_rate": 5.56855458670788e-07,
2762
+ "loss": 1.6745,
2763
+ "step": 431
2764
+ },
2765
+ {
2766
+ "epoch": 1.92,
2767
+ "learning_rate": 4.933396945984741e-07,
2768
+ "loss": 1.624,
2769
+ "step": 432
2770
+ },
2771
+ {
2772
+ "epoch": 1.93,
2773
+ "learning_rate": 4.3365698295361186e-07,
2774
+ "loss": 1.7129,
2775
+ "step": 433
2776
+ },
2777
+ {
2778
+ "epoch": 1.93,
2779
+ "learning_rate": 3.7781039415919203e-07,
2780
+ "loss": 1.6123,
2781
+ "step": 434
2782
+ },
2783
+ {
2784
+ "epoch": 1.94,
2785
+ "learning_rate": 3.258028012859293e-07,
2786
+ "loss": 1.7299,
2787
+ "step": 435
2788
+ },
2789
+ {
2790
+ "epoch": 1.94,
2791
+ "learning_rate": 2.7763687990441376e-07,
2792
+ "loss": 1.7075,
2793
+ "step": 436
2794
+ },
2795
+ {
2796
+ "epoch": 1.95,
2797
+ "learning_rate": 2.3331510794752095e-07,
2798
+ "loss": 1.7314,
2799
+ "step": 437
2800
+ },
2801
+ {
2802
+ "epoch": 1.95,
2803
+ "learning_rate": 1.928397655828723e-07,
2804
+ "loss": 1.6662,
2805
+ "step": 438
2806
+ },
2807
+ {
2808
+ "epoch": 1.96,
2809
+ "learning_rate": 1.5621293509558709e-07,
2810
+ "loss": 1.6527,
2811
+ "step": 439
2812
+ },
2813
+ {
2814
+ "epoch": 1.96,
2815
+ "learning_rate": 1.2343650078111833e-07,
2816
+ "loss": 1.7189,
2817
+ "step": 440
2818
+ },
2819
+ {
2820
+ "epoch": 1.96,
2821
+ "eval_loss": 1.8232473134994507,
2822
+ "eval_runtime": 38.7033,
2823
+ "eval_samples_per_second": 0.594,
2824
+ "eval_steps_per_second": 0.31,
2825
+ "step": 440
2826
+ },
2827
+ {
2828
+ "epoch": 1.96,
2829
+ "learning_rate": 9.451214884833024e-08,
2830
+ "loss": 1.7041,
2831
+ "step": 441
2832
+ },
2833
+ {
2834
+ "epoch": 1.97,
2835
+ "learning_rate": 6.944136733275096e-08,
2836
+ "loss": 1.6602,
2837
+ "step": 442
2838
+ },
2839
+ {
2840
+ "epoch": 1.97,
2841
+ "learning_rate": 4.822544602000877e-08,
2842
+ "loss": 1.7294,
2843
+ "step": 443
2844
+ },
2845
+ {
2846
+ "epoch": 1.98,
2847
+ "learning_rate": 3.086547637949355e-08,
2848
+ "loss": 1.8183,
2849
+ "step": 444
2850
+ },
2851
+ {
2852
+ "epoch": 1.98,
2853
+ "learning_rate": 1.736235150818499e-08,
2854
+ "loss": 1.6412,
2855
+ "step": 445
2856
+ },
2857
+ {
2858
+ "epoch": 1.99,
2859
+ "learning_rate": 7.71676608473104e-09,
2860
+ "loss": 1.8527,
2861
+ "step": 446
2862
+ },
2863
+ {
2864
+ "epoch": 1.99,
2865
+ "learning_rate": 1.929216333684813e-09,
2866
+ "loss": 1.6733,
2867
+ "step": 447
2868
+ },
2869
+ {
2870
+ "epoch": 2.0,
2871
+ "learning_rate": 0.0,
2872
+ "loss": 1.6938,
2873
+ "step": 448
2874
+ }
2875
+ ],
2876
+ "logging_steps": 1,
2877
+ "max_steps": 448,
2878
+ "num_train_epochs": 2,
2879
+ "save_steps": 500,
2880
+ "total_flos": 5.192204049712153e+18,
2881
+ "trial_name": null,
2882
+ "trial_params": null
2883
+ }
checkpoint-448/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f141d0cd094541ad342b2893b053d48ac339035304cab8070541c0ee366277b8
3
+ size 4475
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Llama-2-70b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 8192,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 28672,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 64,
16
+ "num_hidden_layers": 80,
17
+ "num_key_value_heads": 8,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 1,
20
+ "quantization_config": {
21
+ "bnb_4bit_compute_dtype": "bfloat16",
22
+ "bnb_4bit_quant_type": "nf4",
23
+ "bnb_4bit_use_double_quant": true,
24
+ "llm_int8_enable_fp32_cpu_offload": false,
25
+ "llm_int8_has_fp16_weight": false,
26
+ "llm_int8_skip_modules": null,
27
+ "llm_int8_threshold": 6.0,
28
+ "load_in_4bit": true,
29
+ "load_in_8bit": false,
30
+ "quant_method": "bitsandbytes"
31
+ },
32
+ "rms_norm_eps": 1e-05,
33
+ "rope_scaling": null,
34
+ "rope_theta": 10000.0,
35
+ "tie_word_embeddings": false,
36
+ "torch_dtype": "float16",
37
+ "transformers_version": "4.35.0.dev0",
38
+ "use_cache": false,
39
+ "vocab_size": 32000
40
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "</s>",
5
+ "unk_token": "<unk>"
6
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": false,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": "</s>",
37
+ "padding_side": "right",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "tokenizer_file": "Llama-2-70b-hf/tokenizer.json",
42
+ "trust_remote_code": false,
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": true,
45
+ "use_fast": true
46
+ }