Doctor-Shotgun commited on
Commit
95eaaa9
1 Parent(s): 8a15422

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ tags:
4
+ - generated_from_trainer
5
+ base_model: mistralai/Mixtral-8x7B-v0.1
6
+ model-index:
7
+ - name: workspace/volume/mixtral-limarp-qlora-out
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ # workspace/volume/mixtral-limarp-qlora-out
16
+
17
+ This model was trained from scratch on the None dataset.
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 0.0001
37
+ - train_batch_size: 4
38
+ - eval_batch_size: 4
39
+ - seed: 42
40
+ - gradient_accumulation_steps: 2
41
+ - total_train_batch_size: 8
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: cosine
44
+ - lr_scheduler_warmup_steps: 10
45
+ - num_epochs: 3
46
+
47
+ ### Training results
48
+
49
+
50
+
51
+ ### Framework versions
52
+
53
+ - Transformers 4.37.0.dev0
54
+ - Pytorch 2.0.1+cu118
55
+ - Datasets 2.16.1
56
+ - Tokenizers 0.15.0
57
+ ## Training procedure
58
+
59
+
60
+ The following `bitsandbytes` quantization config was used during training:
61
+ - quant_method: bitsandbytes
62
+ - load_in_8bit: False
63
+ - load_in_4bit: True
64
+ - llm_int8_threshold: 6.0
65
+ - llm_int8_skip_modules: None
66
+ - llm_int8_enable_fp32_cpu_offload: False
67
+ - llm_int8_has_fp16_weight: False
68
+ - bnb_4bit_quant_type: nf4
69
+ - bnb_4bit_use_double_quant: True
70
+ - bnb_4bit_compute_dtype: bfloat16
71
+
72
+ ### Framework versions
73
+
74
+
75
+ - PEFT 0.6.0
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "models/Mixtral-8x7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "w2",
20
+ "k_proj",
21
+ "q_proj",
22
+ "o_proj",
23
+ "w1",
24
+ "v_proj",
25
+ "w3",
26
+ "gate"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db9ab0025bafd0267f97835f074b285bb9e5c2827470206b837fc440ca05394e
3
+ size 1938496613
checkpoint-115/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: models/Mixtral-8x7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.0
checkpoint-115/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "models/Mixtral-8x7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "w2",
20
+ "k_proj",
21
+ "q_proj",
22
+ "o_proj",
23
+ "w1",
24
+ "v_proj",
25
+ "w3",
26
+ "gate"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
checkpoint-115/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3325b593f902aa766b1861cf4bb0ffb41f54adc36bc17df51c974b7b3bd8cbf
3
+ size 1938077512
checkpoint-115/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16c920569256807a690052012e9ba2fdc360ea4ee86dbdc010f21e7ee84eb797
3
+ size 972996831
checkpoint-115/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af82624dc04e27b7f63234d76639124e7f2b8f8afb2f33f340506801de4a55ef
3
+ size 14575
checkpoint-115/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47eab85b5cc8364eb29207976030680ce8627d3ffac7bedc36614e446c4622dc
3
+ size 627
checkpoint-115/trainer_state.json ADDED
@@ -0,0 +1,711 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9956709956709957,
5
+ "eval_steps": 500,
6
+ "global_step": 115,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 1e-05,
14
+ "loss": 2.0642,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 2e-05,
20
+ "loss": 2.0704,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 3e-05,
26
+ "loss": 2.0758,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 4e-05,
32
+ "loss": 2.0031,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.04,
37
+ "learning_rate": 5e-05,
38
+ "loss": 2.0466,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.05,
43
+ "learning_rate": 6e-05,
44
+ "loss": 2.027,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.06,
49
+ "learning_rate": 7e-05,
50
+ "loss": 2.0737,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.07,
55
+ "learning_rate": 8e-05,
56
+ "loss": 2.1039,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.08,
61
+ "learning_rate": 9e-05,
62
+ "loss": 2.0212,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.09,
67
+ "learning_rate": 0.0001,
68
+ "loss": 2.047,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.1,
73
+ "learning_rate": 9.999780139628657e-05,
74
+ "loss": 2.0435,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.1,
79
+ "learning_rate": 9.99912057785006e-05,
80
+ "loss": 2.0305,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.11,
85
+ "learning_rate": 9.998021372668808e-05,
86
+ "loss": 1.9602,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.12,
91
+ "learning_rate": 9.996482620753565e-05,
92
+ "loss": 2.0138,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.13,
97
+ "learning_rate": 9.994504457428558e-05,
98
+ "loss": 2.065,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.14,
103
+ "learning_rate": 9.992087056661677e-05,
104
+ "loss": 2.0051,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.15,
109
+ "learning_rate": 9.989230631049171e-05,
110
+ "loss": 2.008,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.16,
115
+ "learning_rate": 9.985935431796962e-05,
116
+ "loss": 1.9578,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.16,
121
+ "learning_rate": 9.982201748698542e-05,
122
+ "loss": 1.9591,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.17,
127
+ "learning_rate": 9.978029910109491e-05,
128
+ "loss": 1.9495,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.18,
133
+ "learning_rate": 9.973420282918601e-05,
134
+ "loss": 1.9121,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.19,
139
+ "learning_rate": 9.968373272515612e-05,
140
+ "loss": 1.9639,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.2,
145
+ "learning_rate": 9.962889322755555e-05,
146
+ "loss": 1.9431,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.21,
151
+ "learning_rate": 9.956968915919725e-05,
152
+ "loss": 1.9283,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.22,
157
+ "learning_rate": 9.950612572673255e-05,
158
+ "loss": 1.9112,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.23,
163
+ "learning_rate": 9.943820852019344e-05,
164
+ "loss": 1.9942,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.23,
169
+ "learning_rate": 9.936594351250082e-05,
170
+ "loss": 1.9536,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.24,
175
+ "learning_rate": 9.928933705893924e-05,
176
+ "loss": 1.9364,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.25,
181
+ "learning_rate": 9.920839589659803e-05,
182
+ "loss": 1.9485,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.26,
187
+ "learning_rate": 9.91231271437788e-05,
188
+ "loss": 1.9743,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.27,
193
+ "learning_rate": 9.903353829936943e-05,
194
+ "loss": 1.9492,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.28,
199
+ "learning_rate": 9.893963724218455e-05,
200
+ "loss": 1.9612,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.29,
205
+ "learning_rate": 9.884143223027266e-05,
206
+ "loss": 1.8852,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.29,
211
+ "learning_rate": 9.873893190018995e-05,
212
+ "loss": 1.9104,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.3,
217
+ "learning_rate": 9.863214526624065e-05,
218
+ "loss": 1.9762,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.31,
223
+ "learning_rate": 9.852108171968436e-05,
224
+ "loss": 1.9602,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.32,
229
+ "learning_rate": 9.840575102791013e-05,
230
+ "loss": 1.9283,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.33,
235
+ "learning_rate": 9.828616333357743e-05,
236
+ "loss": 1.8863,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.34,
241
+ "learning_rate": 9.816232915372423e-05,
242
+ "loss": 1.9776,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.35,
247
+ "learning_rate": 9.8034259378842e-05,
248
+ "loss": 1.8874,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.35,
253
+ "learning_rate": 9.790196527191811e-05,
254
+ "loss": 1.8779,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.36,
259
+ "learning_rate": 9.776545846744509e-05,
260
+ "loss": 1.9399,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.37,
265
+ "learning_rate": 9.762475097039767e-05,
266
+ "loss": 1.8758,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.38,
271
+ "learning_rate": 9.747985515517683e-05,
272
+ "loss": 1.903,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.39,
277
+ "learning_rate": 9.733078376452171e-05,
278
+ "loss": 1.9438,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.4,
283
+ "learning_rate": 9.717754990838881e-05,
284
+ "loss": 1.885,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.41,
289
+ "learning_rate": 9.702016706279913e-05,
290
+ "loss": 1.9278,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.42,
295
+ "learning_rate": 9.685864906865303e-05,
296
+ "loss": 1.9612,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.42,
301
+ "learning_rate": 9.669301013051297e-05,
302
+ "loss": 1.9352,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.43,
307
+ "learning_rate": 9.652326481535435e-05,
308
+ "loss": 1.9198,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.44,
313
+ "learning_rate": 9.634942805128433e-05,
314
+ "loss": 1.9552,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.45,
319
+ "learning_rate": 9.617151512622917e-05,
320
+ "loss": 1.9767,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.46,
325
+ "learning_rate": 9.598954168658955e-05,
326
+ "loss": 1.9933,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.47,
331
+ "learning_rate": 9.580352373586467e-05,
332
+ "loss": 1.9751,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.48,
337
+ "learning_rate": 9.561347763324484e-05,
338
+ "loss": 1.8376,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.48,
343
+ "learning_rate": 9.541942009217273e-05,
344
+ "loss": 1.9485,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.49,
349
+ "learning_rate": 9.522136817887353e-05,
350
+ "loss": 1.885,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.5,
355
+ "learning_rate": 9.501933931085416e-05,
356
+ "loss": 1.9241,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.51,
361
+ "learning_rate": 9.481335125537138e-05,
362
+ "loss": 1.8931,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.52,
367
+ "learning_rate": 9.460342212786932e-05,
368
+ "loss": 1.9544,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.53,
373
+ "learning_rate": 9.43895703903864e-05,
374
+ "loss": 1.8637,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.54,
379
+ "learning_rate": 9.417181484993154e-05,
380
+ "loss": 1.964,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.55,
385
+ "learning_rate": 9.395017465683036e-05,
386
+ "loss": 1.8605,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.55,
391
+ "learning_rate": 9.372466930304091e-05,
392
+ "loss": 1.9388,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.56,
397
+ "learning_rate": 9.349531862043952e-05,
398
+ "loss": 1.9195,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.57,
403
+ "learning_rate": 9.32621427790767e-05,
404
+ "loss": 1.9328,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.58,
409
+ "learning_rate": 9.302516228540327e-05,
410
+ "loss": 1.8901,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.59,
415
+ "learning_rate": 9.278439798046697e-05,
416
+ "loss": 1.9296,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.6,
421
+ "learning_rate": 9.253987103807958e-05,
422
+ "loss": 1.9282,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.61,
427
+ "learning_rate": 9.229160296295488e-05,
428
+ "loss": 1.9448,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.61,
433
+ "learning_rate": 9.203961558881731e-05,
434
+ "loss": 1.9211,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.62,
439
+ "learning_rate": 9.178393107648193e-05,
440
+ "loss": 1.8658,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.63,
445
+ "learning_rate": 9.15245719119055e-05,
446
+ "loss": 1.9358,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.64,
451
+ "learning_rate": 9.126156090420888e-05,
452
+ "loss": 1.9446,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.65,
457
+ "learning_rate": 9.099492118367123e-05,
458
+ "loss": 1.8403,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.66,
463
+ "learning_rate": 9.072467619969572e-05,
464
+ "loss": 1.9857,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.67,
469
+ "learning_rate": 9.045084971874738e-05,
470
+ "loss": 1.878,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.68,
475
+ "learning_rate": 9.017346582226289e-05,
476
+ "loss": 1.9484,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.68,
481
+ "learning_rate": 8.98925489045329e-05,
482
+ "loss": 1.8543,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.69,
487
+ "learning_rate": 8.960812367055646e-05,
488
+ "loss": 1.8613,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.7,
493
+ "learning_rate": 8.93202151338687e-05,
494
+ "loss": 1.887,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.71,
499
+ "learning_rate": 8.902884861434065e-05,
500
+ "loss": 1.8897,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.72,
505
+ "learning_rate": 8.873404973595285e-05,
506
+ "loss": 1.93,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.73,
511
+ "learning_rate": 8.843584442454158e-05,
512
+ "loss": 1.951,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.74,
517
+ "learning_rate": 8.81342589055191e-05,
518
+ "loss": 1.9591,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.74,
523
+ "learning_rate": 8.782931970156707e-05,
524
+ "loss": 1.8649,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.75,
529
+ "learning_rate": 8.752105363030414e-05,
530
+ "loss": 1.9752,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.76,
535
+ "learning_rate": 8.720948780192746e-05,
536
+ "loss": 1.9189,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.77,
541
+ "learning_rate": 8.689464961682852e-05,
542
+ "loss": 1.9188,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.78,
547
+ "learning_rate": 8.657656676318346e-05,
548
+ "loss": 1.9376,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.79,
553
+ "learning_rate": 8.625526721451798e-05,
554
+ "loss": 1.8662,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.8,
559
+ "learning_rate": 8.593077922724733e-05,
560
+ "loss": 1.8113,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.81,
565
+ "learning_rate": 8.560313133819125e-05,
566
+ "loss": 1.8575,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.81,
571
+ "learning_rate": 8.527235236206436e-05,
572
+ "loss": 1.8991,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.82,
577
+ "learning_rate": 8.493847138894209e-05,
578
+ "loss": 1.8475,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.83,
583
+ "learning_rate": 8.46015177817023e-05,
584
+ "loss": 1.8795,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.84,
589
+ "learning_rate": 8.426152117344313e-05,
590
+ "loss": 1.8596,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.85,
595
+ "learning_rate": 8.391851146487675e-05,
596
+ "loss": 1.9481,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.86,
601
+ "learning_rate": 8.357251882169994e-05,
602
+ "loss": 1.9213,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.87,
607
+ "learning_rate": 8.322357367194109e-05,
608
+ "loss": 1.9243,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.87,
613
+ "learning_rate": 8.28717067032843e-05,
614
+ "loss": 1.8764,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.88,
619
+ "learning_rate": 8.251694886037052e-05,
620
+ "loss": 1.9728,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.89,
625
+ "learning_rate": 8.215933134207618e-05,
626
+ "loss": 1.884,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.9,
631
+ "learning_rate": 8.179888559876943e-05,
632
+ "loss": 1.9589,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.91,
637
+ "learning_rate": 8.143564332954425e-05,
638
+ "loss": 2.017,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.92,
643
+ "learning_rate": 8.106963647943274e-05,
644
+ "loss": 1.9672,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.93,
649
+ "learning_rate": 8.070089723659566e-05,
650
+ "loss": 1.8711,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.94,
655
+ "learning_rate": 8.032945802949179e-05,
656
+ "loss": 1.9211,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.94,
661
+ "learning_rate": 7.995535152402591e-05,
662
+ "loss": 1.9019,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.95,
667
+ "learning_rate": 7.957861062067614e-05,
668
+ "loss": 1.8887,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.96,
673
+ "learning_rate": 7.919926845160037e-05,
674
+ "loss": 1.9923,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.97,
679
+ "learning_rate": 7.881735837772274e-05,
680
+ "loss": 1.8621,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.98,
685
+ "learning_rate": 7.843291398579946e-05,
686
+ "loss": 1.9584,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.99,
691
+ "learning_rate": 7.804596908546529e-05,
692
+ "loss": 1.943,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 1.0,
697
+ "learning_rate": 7.765655770625997e-05,
698
+ "loss": 1.8953,
699
+ "step": 115
700
+ }
701
+ ],
702
+ "logging_steps": 1,
703
+ "max_steps": 345,
704
+ "num_input_tokens_seen": 0,
705
+ "num_train_epochs": 3,
706
+ "save_steps": 115,
707
+ "total_flos": 2.6099686427118797e+18,
708
+ "train_batch_size": 4,
709
+ "trial_name": null,
710
+ "trial_params": null
711
+ }
checkpoint-115/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e39737902bc1aa013dd8f6b24d000cda19aabe9b71208ae812379be1726ec8c
3
+ size 4795
checkpoint-230/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: models/Mixtral-8x7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.0
checkpoint-230/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "models/Mixtral-8x7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "w2",
20
+ "k_proj",
21
+ "q_proj",
22
+ "o_proj",
23
+ "w1",
24
+ "v_proj",
25
+ "w3",
26
+ "gate"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
checkpoint-230/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a909a20ca6a9c570131f7517e93fad8bc853beaea325236e5bb10e5e1ece599
3
+ size 1938077512
checkpoint-230/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af45f6bff42bccd81acdde64bf933c8b06fcf5b63fabb60d634fd0b60a48ba40
3
+ size 972996831
checkpoint-230/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:668f14d6f24cf58549da323e7e5973480780596e6861e4b5823f339b027234ed
3
+ size 14575
checkpoint-230/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d6eeffe63d8c7884ee8ede6b834a2f9647394e073b51e591f22421636a2fca8
3
+ size 627
checkpoint-230/trainer_state.json ADDED
@@ -0,0 +1,1401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9653679653679652,
5
+ "eval_steps": 500,
6
+ "global_step": 230,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 1e-05,
14
+ "loss": 2.0642,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 2e-05,
20
+ "loss": 2.0704,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 3e-05,
26
+ "loss": 2.0758,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 4e-05,
32
+ "loss": 2.0031,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.04,
37
+ "learning_rate": 5e-05,
38
+ "loss": 2.0466,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.05,
43
+ "learning_rate": 6e-05,
44
+ "loss": 2.027,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.06,
49
+ "learning_rate": 7e-05,
50
+ "loss": 2.0737,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.07,
55
+ "learning_rate": 8e-05,
56
+ "loss": 2.1039,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.08,
61
+ "learning_rate": 9e-05,
62
+ "loss": 2.0212,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.09,
67
+ "learning_rate": 0.0001,
68
+ "loss": 2.047,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.1,
73
+ "learning_rate": 9.999780139628657e-05,
74
+ "loss": 2.0435,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.1,
79
+ "learning_rate": 9.99912057785006e-05,
80
+ "loss": 2.0305,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.11,
85
+ "learning_rate": 9.998021372668808e-05,
86
+ "loss": 1.9602,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.12,
91
+ "learning_rate": 9.996482620753565e-05,
92
+ "loss": 2.0138,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.13,
97
+ "learning_rate": 9.994504457428558e-05,
98
+ "loss": 2.065,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.14,
103
+ "learning_rate": 9.992087056661677e-05,
104
+ "loss": 2.0051,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.15,
109
+ "learning_rate": 9.989230631049171e-05,
110
+ "loss": 2.008,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.16,
115
+ "learning_rate": 9.985935431796962e-05,
116
+ "loss": 1.9578,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.16,
121
+ "learning_rate": 9.982201748698542e-05,
122
+ "loss": 1.9591,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.17,
127
+ "learning_rate": 9.978029910109491e-05,
128
+ "loss": 1.9495,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.18,
133
+ "learning_rate": 9.973420282918601e-05,
134
+ "loss": 1.9121,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.19,
139
+ "learning_rate": 9.968373272515612e-05,
140
+ "loss": 1.9639,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.2,
145
+ "learning_rate": 9.962889322755555e-05,
146
+ "loss": 1.9431,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.21,
151
+ "learning_rate": 9.956968915919725e-05,
152
+ "loss": 1.9283,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.22,
157
+ "learning_rate": 9.950612572673255e-05,
158
+ "loss": 1.9112,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.23,
163
+ "learning_rate": 9.943820852019344e-05,
164
+ "loss": 1.9942,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.23,
169
+ "learning_rate": 9.936594351250082e-05,
170
+ "loss": 1.9536,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.24,
175
+ "learning_rate": 9.928933705893924e-05,
176
+ "loss": 1.9364,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.25,
181
+ "learning_rate": 9.920839589659803e-05,
182
+ "loss": 1.9485,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.26,
187
+ "learning_rate": 9.91231271437788e-05,
188
+ "loss": 1.9743,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.27,
193
+ "learning_rate": 9.903353829936943e-05,
194
+ "loss": 1.9492,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.28,
199
+ "learning_rate": 9.893963724218455e-05,
200
+ "loss": 1.9612,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.29,
205
+ "learning_rate": 9.884143223027266e-05,
206
+ "loss": 1.8852,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.29,
211
+ "learning_rate": 9.873893190018995e-05,
212
+ "loss": 1.9104,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.3,
217
+ "learning_rate": 9.863214526624065e-05,
218
+ "loss": 1.9762,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.31,
223
+ "learning_rate": 9.852108171968436e-05,
224
+ "loss": 1.9602,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.32,
229
+ "learning_rate": 9.840575102791013e-05,
230
+ "loss": 1.9283,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.33,
235
+ "learning_rate": 9.828616333357743e-05,
236
+ "loss": 1.8863,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.34,
241
+ "learning_rate": 9.816232915372423e-05,
242
+ "loss": 1.9776,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.35,
247
+ "learning_rate": 9.8034259378842e-05,
248
+ "loss": 1.8874,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.35,
253
+ "learning_rate": 9.790196527191811e-05,
254
+ "loss": 1.8779,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.36,
259
+ "learning_rate": 9.776545846744509e-05,
260
+ "loss": 1.9399,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.37,
265
+ "learning_rate": 9.762475097039767e-05,
266
+ "loss": 1.8758,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.38,
271
+ "learning_rate": 9.747985515517683e-05,
272
+ "loss": 1.903,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.39,
277
+ "learning_rate": 9.733078376452171e-05,
278
+ "loss": 1.9438,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.4,
283
+ "learning_rate": 9.717754990838881e-05,
284
+ "loss": 1.885,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.41,
289
+ "learning_rate": 9.702016706279913e-05,
290
+ "loss": 1.9278,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.42,
295
+ "learning_rate": 9.685864906865303e-05,
296
+ "loss": 1.9612,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.42,
301
+ "learning_rate": 9.669301013051297e-05,
302
+ "loss": 1.9352,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.43,
307
+ "learning_rate": 9.652326481535435e-05,
308
+ "loss": 1.9198,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.44,
313
+ "learning_rate": 9.634942805128433e-05,
314
+ "loss": 1.9552,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.45,
319
+ "learning_rate": 9.617151512622917e-05,
320
+ "loss": 1.9767,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.46,
325
+ "learning_rate": 9.598954168658955e-05,
326
+ "loss": 1.9933,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.47,
331
+ "learning_rate": 9.580352373586467e-05,
332
+ "loss": 1.9751,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.48,
337
+ "learning_rate": 9.561347763324484e-05,
338
+ "loss": 1.8376,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.48,
343
+ "learning_rate": 9.541942009217273e-05,
344
+ "loss": 1.9485,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.49,
349
+ "learning_rate": 9.522136817887353e-05,
350
+ "loss": 1.885,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.5,
355
+ "learning_rate": 9.501933931085416e-05,
356
+ "loss": 1.9241,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.51,
361
+ "learning_rate": 9.481335125537138e-05,
362
+ "loss": 1.8931,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.52,
367
+ "learning_rate": 9.460342212786932e-05,
368
+ "loss": 1.9544,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.53,
373
+ "learning_rate": 9.43895703903864e-05,
374
+ "loss": 1.8637,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.54,
379
+ "learning_rate": 9.417181484993154e-05,
380
+ "loss": 1.964,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.55,
385
+ "learning_rate": 9.395017465683036e-05,
386
+ "loss": 1.8605,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.55,
391
+ "learning_rate": 9.372466930304091e-05,
392
+ "loss": 1.9388,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.56,
397
+ "learning_rate": 9.349531862043952e-05,
398
+ "loss": 1.9195,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.57,
403
+ "learning_rate": 9.32621427790767e-05,
404
+ "loss": 1.9328,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.58,
409
+ "learning_rate": 9.302516228540327e-05,
410
+ "loss": 1.8901,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.59,
415
+ "learning_rate": 9.278439798046697e-05,
416
+ "loss": 1.9296,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.6,
421
+ "learning_rate": 9.253987103807958e-05,
422
+ "loss": 1.9282,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.61,
427
+ "learning_rate": 9.229160296295488e-05,
428
+ "loss": 1.9448,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.61,
433
+ "learning_rate": 9.203961558881731e-05,
434
+ "loss": 1.9211,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.62,
439
+ "learning_rate": 9.178393107648193e-05,
440
+ "loss": 1.8658,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.63,
445
+ "learning_rate": 9.15245719119055e-05,
446
+ "loss": 1.9358,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.64,
451
+ "learning_rate": 9.126156090420888e-05,
452
+ "loss": 1.9446,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.65,
457
+ "learning_rate": 9.099492118367123e-05,
458
+ "loss": 1.8403,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.66,
463
+ "learning_rate": 9.072467619969572e-05,
464
+ "loss": 1.9857,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.67,
469
+ "learning_rate": 9.045084971874738e-05,
470
+ "loss": 1.878,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.68,
475
+ "learning_rate": 9.017346582226289e-05,
476
+ "loss": 1.9484,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.68,
481
+ "learning_rate": 8.98925489045329e-05,
482
+ "loss": 1.8543,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.69,
487
+ "learning_rate": 8.960812367055646e-05,
488
+ "loss": 1.8613,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.7,
493
+ "learning_rate": 8.93202151338687e-05,
494
+ "loss": 1.887,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.71,
499
+ "learning_rate": 8.902884861434065e-05,
500
+ "loss": 1.8897,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.72,
505
+ "learning_rate": 8.873404973595285e-05,
506
+ "loss": 1.93,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.73,
511
+ "learning_rate": 8.843584442454158e-05,
512
+ "loss": 1.951,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.74,
517
+ "learning_rate": 8.81342589055191e-05,
518
+ "loss": 1.9591,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.74,
523
+ "learning_rate": 8.782931970156707e-05,
524
+ "loss": 1.8649,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.75,
529
+ "learning_rate": 8.752105363030414e-05,
530
+ "loss": 1.9752,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.76,
535
+ "learning_rate": 8.720948780192746e-05,
536
+ "loss": 1.9189,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.77,
541
+ "learning_rate": 8.689464961682852e-05,
542
+ "loss": 1.9188,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.78,
547
+ "learning_rate": 8.657656676318346e-05,
548
+ "loss": 1.9376,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.79,
553
+ "learning_rate": 8.625526721451798e-05,
554
+ "loss": 1.8662,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.8,
559
+ "learning_rate": 8.593077922724733e-05,
560
+ "loss": 1.8113,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.81,
565
+ "learning_rate": 8.560313133819125e-05,
566
+ "loss": 1.8575,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.81,
571
+ "learning_rate": 8.527235236206436e-05,
572
+ "loss": 1.8991,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.82,
577
+ "learning_rate": 8.493847138894209e-05,
578
+ "loss": 1.8475,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.83,
583
+ "learning_rate": 8.46015177817023e-05,
584
+ "loss": 1.8795,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.84,
589
+ "learning_rate": 8.426152117344313e-05,
590
+ "loss": 1.8596,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.85,
595
+ "learning_rate": 8.391851146487675e-05,
596
+ "loss": 1.9481,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.86,
601
+ "learning_rate": 8.357251882169994e-05,
602
+ "loss": 1.9213,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.87,
607
+ "learning_rate": 8.322357367194109e-05,
608
+ "loss": 1.9243,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.87,
613
+ "learning_rate": 8.28717067032843e-05,
614
+ "loss": 1.8764,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.88,
619
+ "learning_rate": 8.251694886037052e-05,
620
+ "loss": 1.9728,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.89,
625
+ "learning_rate": 8.215933134207618e-05,
626
+ "loss": 1.884,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.9,
631
+ "learning_rate": 8.179888559876943e-05,
632
+ "loss": 1.9589,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.91,
637
+ "learning_rate": 8.143564332954425e-05,
638
+ "loss": 2.017,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.92,
643
+ "learning_rate": 8.106963647943274e-05,
644
+ "loss": 1.9672,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.93,
649
+ "learning_rate": 8.070089723659566e-05,
650
+ "loss": 1.8711,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.94,
655
+ "learning_rate": 8.032945802949179e-05,
656
+ "loss": 1.9211,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.94,
661
+ "learning_rate": 7.995535152402591e-05,
662
+ "loss": 1.9019,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.95,
667
+ "learning_rate": 7.957861062067614e-05,
668
+ "loss": 1.8887,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.96,
673
+ "learning_rate": 7.919926845160037e-05,
674
+ "loss": 1.9923,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.97,
679
+ "learning_rate": 7.881735837772274e-05,
680
+ "loss": 1.8621,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.98,
685
+ "learning_rate": 7.843291398579946e-05,
686
+ "loss": 1.9584,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.99,
691
+ "learning_rate": 7.804596908546529e-05,
692
+ "loss": 1.943,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 1.0,
697
+ "learning_rate": 7.765655770625997e-05,
698
+ "loss": 1.8953,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 1.0,
703
+ "learning_rate": 7.726471409463572e-05,
704
+ "loss": 1.9394,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 1.01,
709
+ "learning_rate": 7.687047271094527e-05,
710
+ "loss": 1.91,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 1.02,
715
+ "learning_rate": 7.64738682264115e-05,
716
+ "loss": 1.9356,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 1.0,
721
+ "learning_rate": 7.607493552007805e-05,
722
+ "loss": 1.9421,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 1.01,
727
+ "learning_rate": 7.56737096757421e-05,
728
+ "loss": 1.8658,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 1.02,
733
+ "learning_rate": 7.527022597886895e-05,
734
+ "loss": 1.9158,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 1.03,
739
+ "learning_rate": 7.486451991348872e-05,
740
+ "loss": 1.9376,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 1.04,
745
+ "learning_rate": 7.445662715907591e-05,
746
+ "loss": 1.9365,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 1.05,
751
+ "learning_rate": 7.40465835874115e-05,
752
+ "loss": 1.8633,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 1.06,
757
+ "learning_rate": 7.363442525942826e-05,
758
+ "loss": 1.8888,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 1.06,
763
+ "learning_rate": 7.322018842203941e-05,
764
+ "loss": 1.8944,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 1.07,
769
+ "learning_rate": 7.280390950495093e-05,
770
+ "loss": 1.8644,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 1.08,
775
+ "learning_rate": 7.238562511745768e-05,
776
+ "loss": 1.9133,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 1.09,
781
+ "learning_rate": 7.196537204522401e-05,
782
+ "loss": 1.8339,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 1.1,
787
+ "learning_rate": 7.154318724704853e-05,
788
+ "loss": 1.8625,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 1.11,
793
+ "learning_rate": 7.111910785161381e-05,
794
+ "loss": 1.8877,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 1.12,
799
+ "learning_rate": 7.06931711542212e-05,
800
+ "loss": 1.9571,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 1.13,
805
+ "learning_rate": 7.026541461351092e-05,
806
+ "loss": 1.8926,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 1.13,
811
+ "learning_rate": 6.983587584816769e-05,
812
+ "loss": 1.8999,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 1.14,
817
+ "learning_rate": 6.940459263361249e-05,
818
+ "loss": 1.8957,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 1.15,
823
+ "learning_rate": 6.897160289868042e-05,
824
+ "loss": 1.9096,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 1.16,
829
+ "learning_rate": 6.853694472228503e-05,
830
+ "loss": 1.8695,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 1.17,
835
+ "learning_rate": 6.810065633006956e-05,
836
+ "loss": 1.8959,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 1.18,
841
+ "learning_rate": 6.766277609104518e-05,
842
+ "loss": 1.8242,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 1.19,
847
+ "learning_rate": 6.722334251421665e-05,
848
+ "loss": 1.8903,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 1.19,
853
+ "learning_rate": 6.678239424519575e-05,
854
+ "loss": 1.8978,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 1.2,
859
+ "learning_rate": 6.633997006280252e-05,
860
+ "loss": 1.8537,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 1.21,
865
+ "learning_rate": 6.589610887565503e-05,
866
+ "loss": 1.842,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 1.22,
871
+ "learning_rate": 6.545084971874738e-05,
872
+ "loss": 1.9226,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 1.23,
877
+ "learning_rate": 6.500423175001705e-05,
878
+ "loss": 1.8413,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 1.24,
883
+ "learning_rate": 6.4556294246901e-05,
884
+ "loss": 1.8876,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 1.25,
889
+ "learning_rate": 6.410707660288155e-05,
890
+ "loss": 1.902,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 1.26,
895
+ "learning_rate": 6.36566183240219e-05,
896
+ "loss": 1.9084,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 1.26,
901
+ "learning_rate": 6.320495902549183e-05,
902
+ "loss": 1.8314,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 1.27,
907
+ "learning_rate": 6.275213842808383e-05,
908
+ "loss": 1.9189,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 1.28,
913
+ "learning_rate": 6.229819635471972e-05,
914
+ "loss": 1.8738,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 1.29,
919
+ "learning_rate": 6.184317272694867e-05,
920
+ "loss": 1.8302,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 1.3,
925
+ "learning_rate": 6.138710756143613e-05,
926
+ "loss": 1.91,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 1.31,
931
+ "learning_rate": 6.093004096644481e-05,
932
+ "loss": 1.8405,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 1.32,
937
+ "learning_rate": 6.0472013138307235e-05,
938
+ "loss": 1.8767,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 1.32,
943
+ "learning_rate": 6.001306435789072e-05,
944
+ "loss": 1.8827,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 1.33,
949
+ "learning_rate": 5.9553234987055006e-05,
950
+ "loss": 1.938,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 1.34,
955
+ "learning_rate": 5.909256546510257e-05,
956
+ "loss": 1.8674,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 1.35,
961
+ "learning_rate": 5.86310963052223e-05,
962
+ "loss": 1.9161,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 1.36,
967
+ "learning_rate": 5.816886809092651e-05,
968
+ "loss": 1.8738,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 1.37,
973
+ "learning_rate": 5.770592147248196e-05,
974
+ "loss": 1.855,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 1.38,
979
+ "learning_rate": 5.7242297163334804e-05,
980
+ "loss": 1.895,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 1.39,
985
+ "learning_rate": 5.6778035936530184e-05,
986
+ "loss": 1.8702,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 1.39,
991
+ "learning_rate": 5.631317862112636e-05,
992
+ "loss": 1.9038,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 1.4,
997
+ "learning_rate": 5.584776609860414e-05,
998
+ "loss": 1.8444,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 1.41,
1003
+ "learning_rate": 5.538183929927152e-05,
1004
+ "loss": 1.9575,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 1.42,
1009
+ "learning_rate": 5.4915439198664164e-05,
1010
+ "loss": 1.9068,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 1.43,
1015
+ "learning_rate": 5.4448606813941805e-05,
1016
+ "loss": 1.8192,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 1.44,
1021
+ "learning_rate": 5.3981383200281e-05,
1022
+ "loss": 1.8179,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 1.45,
1027
+ "learning_rate": 5.351380944726465e-05,
1028
+ "loss": 1.9271,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 1.45,
1033
+ "learning_rate": 5.3045926675268344e-05,
1034
+ "loss": 1.8794,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 1.46,
1039
+ "learning_rate": 5.257777603184407e-05,
1040
+ "loss": 1.9613,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 1.47,
1045
+ "learning_rate": 5.210939868810156e-05,
1046
+ "loss": 1.9117,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 1.48,
1051
+ "learning_rate": 5.16408358350875e-05,
1052
+ "loss": 1.8796,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 1.49,
1057
+ "learning_rate": 5.117212868016303e-05,
1058
+ "loss": 1.881,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 1.5,
1063
+ "learning_rate": 5.07033184433798e-05,
1064
+ "loss": 1.9096,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 1.51,
1069
+ "learning_rate": 5.023444635385493e-05,
1070
+ "loss": 1.9094,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 1.52,
1075
+ "learning_rate": 4.9765553646145086e-05,
1076
+ "loss": 1.9166,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 1.52,
1081
+ "learning_rate": 4.9296681556620207e-05,
1082
+ "loss": 1.8408,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 1.53,
1087
+ "learning_rate": 4.882787131983698e-05,
1088
+ "loss": 1.9153,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 1.54,
1093
+ "learning_rate": 4.835916416491251e-05,
1094
+ "loss": 1.8751,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 1.55,
1099
+ "learning_rate": 4.789060131189845e-05,
1100
+ "loss": 1.9234,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 1.56,
1105
+ "learning_rate": 4.742222396815593e-05,
1106
+ "loss": 1.937,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 1.57,
1111
+ "learning_rate": 4.6954073324731654e-05,
1112
+ "loss": 1.9361,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 1.58,
1117
+ "learning_rate": 4.648619055273537e-05,
1118
+ "loss": 1.8353,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 1.58,
1123
+ "learning_rate": 4.601861679971901e-05,
1124
+ "loss": 1.9344,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 1.59,
1129
+ "learning_rate": 4.5551393186058213e-05,
1130
+ "loss": 1.788,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 1.6,
1135
+ "learning_rate": 4.508456080133584e-05,
1136
+ "loss": 1.8955,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 1.61,
1141
+ "learning_rate": 4.461816070072851e-05,
1142
+ "loss": 1.9064,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 1.62,
1147
+ "learning_rate": 4.415223390139588e-05,
1148
+ "loss": 1.858,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 1.63,
1153
+ "learning_rate": 4.368682137887365e-05,
1154
+ "loss": 1.8601,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 1.64,
1159
+ "learning_rate": 4.322196406346984e-05,
1160
+ "loss": 1.9734,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 1.65,
1165
+ "learning_rate": 4.27577028366652e-05,
1166
+ "loss": 1.8557,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 1.65,
1171
+ "learning_rate": 4.229407852751806e-05,
1172
+ "loss": 1.9431,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 1.66,
1177
+ "learning_rate": 4.183113190907349e-05,
1178
+ "loss": 1.9365,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 1.67,
1183
+ "learning_rate": 4.136890369477772e-05,
1184
+ "loss": 1.831,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 1.68,
1189
+ "learning_rate": 4.090743453489744e-05,
1190
+ "loss": 1.8685,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 1.69,
1195
+ "learning_rate": 4.0446765012945006e-05,
1196
+ "loss": 1.8634,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 1.7,
1201
+ "learning_rate": 3.998693564210929e-05,
1202
+ "loss": 1.8493,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 1.71,
1207
+ "learning_rate": 3.952798686169279e-05,
1208
+ "loss": 1.8875,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 1.71,
1213
+ "learning_rate": 3.9069959033555195e-05,
1214
+ "loss": 1.9417,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 1.72,
1219
+ "learning_rate": 3.861289243856388e-05,
1220
+ "loss": 1.8595,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 1.73,
1225
+ "learning_rate": 3.8156827273051365e-05,
1226
+ "loss": 1.8732,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 1.74,
1231
+ "learning_rate": 3.770180364528029e-05,
1232
+ "loss": 1.8268,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 1.75,
1237
+ "learning_rate": 3.7247861571916185e-05,
1238
+ "loss": 1.869,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 1.76,
1243
+ "learning_rate": 3.679504097450816e-05,
1244
+ "loss": 1.8882,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 1.77,
1249
+ "learning_rate": 3.6343381675978116e-05,
1250
+ "loss": 1.849,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 1.77,
1255
+ "learning_rate": 3.5892923397118474e-05,
1256
+ "loss": 1.88,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 1.78,
1261
+ "learning_rate": 3.5443705753099014e-05,
1262
+ "loss": 1.884,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 1.79,
1267
+ "learning_rate": 3.499576824998298e-05,
1268
+ "loss": 1.8501,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 1.8,
1273
+ "learning_rate": 3.4549150281252636e-05,
1274
+ "loss": 1.8654,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 1.81,
1279
+ "learning_rate": 3.410389112434499e-05,
1280
+ "loss": 1.8698,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 1.82,
1285
+ "learning_rate": 3.366002993719747e-05,
1286
+ "loss": 1.8402,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 1.83,
1291
+ "learning_rate": 3.321760575480427e-05,
1292
+ "loss": 1.8361,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 1.84,
1297
+ "learning_rate": 3.277665748578336e-05,
1298
+ "loss": 1.8392,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 1.84,
1303
+ "learning_rate": 3.233722390895483e-05,
1304
+ "loss": 1.9025,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 1.85,
1309
+ "learning_rate": 3.1899343669930446e-05,
1310
+ "loss": 1.8904,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 1.86,
1315
+ "learning_rate": 3.146305527771499e-05,
1316
+ "loss": 1.9215,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 1.87,
1321
+ "learning_rate": 3.102839710131958e-05,
1322
+ "loss": 1.8426,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 1.88,
1327
+ "learning_rate": 3.0595407366387504e-05,
1328
+ "loss": 1.9003,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 1.89,
1333
+ "learning_rate": 3.016412415183233e-05,
1334
+ "loss": 1.8339,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 1.9,
1339
+ "learning_rate": 2.9734585386489093e-05,
1340
+ "loss": 1.8936,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 1.9,
1345
+ "learning_rate": 2.93068288457788e-05,
1346
+ "loss": 1.8554,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 1.91,
1351
+ "learning_rate": 2.8880892148386198e-05,
1352
+ "loss": 1.9069,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 1.92,
1357
+ "learning_rate": 2.8456812752951485e-05,
1358
+ "loss": 1.9439,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 1.93,
1363
+ "learning_rate": 2.8034627954775994e-05,
1364
+ "loss": 1.888,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 1.94,
1369
+ "learning_rate": 2.7614374882542317e-05,
1370
+ "loss": 1.9194,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 1.95,
1375
+ "learning_rate": 2.719609049504911e-05,
1376
+ "loss": 1.895,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 1.96,
1381
+ "learning_rate": 2.677981157796059e-05,
1382
+ "loss": 1.8856,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 1.97,
1387
+ "learning_rate": 2.636557474057173e-05,
1388
+ "loss": 1.8132,
1389
+ "step": 230
1390
+ }
1391
+ ],
1392
+ "logging_steps": 1,
1393
+ "max_steps": 345,
1394
+ "num_input_tokens_seen": 0,
1395
+ "num_train_epochs": 3,
1396
+ "save_steps": 115,
1397
+ "total_flos": 5.211426518110568e+18,
1398
+ "train_batch_size": 4,
1399
+ "trial_name": null,
1400
+ "trial_params": null
1401
+ }
checkpoint-230/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e39737902bc1aa013dd8f6b24d000cda19aabe9b71208ae812379be1726ec8c
3
+ size 4795
checkpoint-345/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: models/Mixtral-8x7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.0
checkpoint-345/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "models/Mixtral-8x7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "w2",
20
+ "k_proj",
21
+ "q_proj",
22
+ "o_proj",
23
+ "w1",
24
+ "v_proj",
25
+ "w3",
26
+ "gate"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
checkpoint-345/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdf652549174df3df03046aeeab44f7f064f420fccbaac711a2ef3918db73879
3
+ size 1938077512
checkpoint-345/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37c781620ff6f9887affde54d887e1a0061dc8ec9ec959be9595d325ab08e3f2
3
+ size 972998687
checkpoint-345/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:942b2dd789f3258b07280489bf08f2bfc3c8d694d13c0348dd1fd15347b760de
3
+ size 14575
checkpoint-345/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf3f7fc1aafbb579094c3e8aa83cdc71ce8c488b4be46f18c6438e1775f7d238
3
+ size 627
checkpoint-345/trainer_state.json ADDED
@@ -0,0 +1,2091 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9393939393939394,
5
+ "eval_steps": 500,
6
+ "global_step": 345,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 1e-05,
14
+ "loss": 2.0642,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 2e-05,
20
+ "loss": 2.0704,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 3e-05,
26
+ "loss": 2.0758,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 4e-05,
32
+ "loss": 2.0031,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.04,
37
+ "learning_rate": 5e-05,
38
+ "loss": 2.0466,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.05,
43
+ "learning_rate": 6e-05,
44
+ "loss": 2.027,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.06,
49
+ "learning_rate": 7e-05,
50
+ "loss": 2.0737,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.07,
55
+ "learning_rate": 8e-05,
56
+ "loss": 2.1039,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.08,
61
+ "learning_rate": 9e-05,
62
+ "loss": 2.0212,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.09,
67
+ "learning_rate": 0.0001,
68
+ "loss": 2.047,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.1,
73
+ "learning_rate": 9.999780139628657e-05,
74
+ "loss": 2.0435,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.1,
79
+ "learning_rate": 9.99912057785006e-05,
80
+ "loss": 2.0305,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.11,
85
+ "learning_rate": 9.998021372668808e-05,
86
+ "loss": 1.9602,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.12,
91
+ "learning_rate": 9.996482620753565e-05,
92
+ "loss": 2.0138,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.13,
97
+ "learning_rate": 9.994504457428558e-05,
98
+ "loss": 2.065,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.14,
103
+ "learning_rate": 9.992087056661677e-05,
104
+ "loss": 2.0051,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.15,
109
+ "learning_rate": 9.989230631049171e-05,
110
+ "loss": 2.008,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.16,
115
+ "learning_rate": 9.985935431796962e-05,
116
+ "loss": 1.9578,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.16,
121
+ "learning_rate": 9.982201748698542e-05,
122
+ "loss": 1.9591,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.17,
127
+ "learning_rate": 9.978029910109491e-05,
128
+ "loss": 1.9495,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.18,
133
+ "learning_rate": 9.973420282918601e-05,
134
+ "loss": 1.9121,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.19,
139
+ "learning_rate": 9.968373272515612e-05,
140
+ "loss": 1.9639,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.2,
145
+ "learning_rate": 9.962889322755555e-05,
146
+ "loss": 1.9431,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.21,
151
+ "learning_rate": 9.956968915919725e-05,
152
+ "loss": 1.9283,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.22,
157
+ "learning_rate": 9.950612572673255e-05,
158
+ "loss": 1.9112,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.23,
163
+ "learning_rate": 9.943820852019344e-05,
164
+ "loss": 1.9942,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.23,
169
+ "learning_rate": 9.936594351250082e-05,
170
+ "loss": 1.9536,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.24,
175
+ "learning_rate": 9.928933705893924e-05,
176
+ "loss": 1.9364,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.25,
181
+ "learning_rate": 9.920839589659803e-05,
182
+ "loss": 1.9485,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.26,
187
+ "learning_rate": 9.91231271437788e-05,
188
+ "loss": 1.9743,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.27,
193
+ "learning_rate": 9.903353829936943e-05,
194
+ "loss": 1.9492,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.28,
199
+ "learning_rate": 9.893963724218455e-05,
200
+ "loss": 1.9612,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.29,
205
+ "learning_rate": 9.884143223027266e-05,
206
+ "loss": 1.8852,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.29,
211
+ "learning_rate": 9.873893190018995e-05,
212
+ "loss": 1.9104,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.3,
217
+ "learning_rate": 9.863214526624065e-05,
218
+ "loss": 1.9762,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.31,
223
+ "learning_rate": 9.852108171968436e-05,
224
+ "loss": 1.9602,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.32,
229
+ "learning_rate": 9.840575102791013e-05,
230
+ "loss": 1.9283,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.33,
235
+ "learning_rate": 9.828616333357743e-05,
236
+ "loss": 1.8863,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.34,
241
+ "learning_rate": 9.816232915372423e-05,
242
+ "loss": 1.9776,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.35,
247
+ "learning_rate": 9.8034259378842e-05,
248
+ "loss": 1.8874,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.35,
253
+ "learning_rate": 9.790196527191811e-05,
254
+ "loss": 1.8779,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.36,
259
+ "learning_rate": 9.776545846744509e-05,
260
+ "loss": 1.9399,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.37,
265
+ "learning_rate": 9.762475097039767e-05,
266
+ "loss": 1.8758,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.38,
271
+ "learning_rate": 9.747985515517683e-05,
272
+ "loss": 1.903,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.39,
277
+ "learning_rate": 9.733078376452171e-05,
278
+ "loss": 1.9438,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.4,
283
+ "learning_rate": 9.717754990838881e-05,
284
+ "loss": 1.885,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.41,
289
+ "learning_rate": 9.702016706279913e-05,
290
+ "loss": 1.9278,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.42,
295
+ "learning_rate": 9.685864906865303e-05,
296
+ "loss": 1.9612,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.42,
301
+ "learning_rate": 9.669301013051297e-05,
302
+ "loss": 1.9352,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.43,
307
+ "learning_rate": 9.652326481535435e-05,
308
+ "loss": 1.9198,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.44,
313
+ "learning_rate": 9.634942805128433e-05,
314
+ "loss": 1.9552,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.45,
319
+ "learning_rate": 9.617151512622917e-05,
320
+ "loss": 1.9767,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.46,
325
+ "learning_rate": 9.598954168658955e-05,
326
+ "loss": 1.9933,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.47,
331
+ "learning_rate": 9.580352373586467e-05,
332
+ "loss": 1.9751,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.48,
337
+ "learning_rate": 9.561347763324484e-05,
338
+ "loss": 1.8376,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.48,
343
+ "learning_rate": 9.541942009217273e-05,
344
+ "loss": 1.9485,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.49,
349
+ "learning_rate": 9.522136817887353e-05,
350
+ "loss": 1.885,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.5,
355
+ "learning_rate": 9.501933931085416e-05,
356
+ "loss": 1.9241,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.51,
361
+ "learning_rate": 9.481335125537138e-05,
362
+ "loss": 1.8931,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.52,
367
+ "learning_rate": 9.460342212786932e-05,
368
+ "loss": 1.9544,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.53,
373
+ "learning_rate": 9.43895703903864e-05,
374
+ "loss": 1.8637,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.54,
379
+ "learning_rate": 9.417181484993154e-05,
380
+ "loss": 1.964,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.55,
385
+ "learning_rate": 9.395017465683036e-05,
386
+ "loss": 1.8605,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.55,
391
+ "learning_rate": 9.372466930304091e-05,
392
+ "loss": 1.9388,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.56,
397
+ "learning_rate": 9.349531862043952e-05,
398
+ "loss": 1.9195,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.57,
403
+ "learning_rate": 9.32621427790767e-05,
404
+ "loss": 1.9328,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.58,
409
+ "learning_rate": 9.302516228540327e-05,
410
+ "loss": 1.8901,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.59,
415
+ "learning_rate": 9.278439798046697e-05,
416
+ "loss": 1.9296,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.6,
421
+ "learning_rate": 9.253987103807958e-05,
422
+ "loss": 1.9282,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.61,
427
+ "learning_rate": 9.229160296295488e-05,
428
+ "loss": 1.9448,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.61,
433
+ "learning_rate": 9.203961558881731e-05,
434
+ "loss": 1.9211,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.62,
439
+ "learning_rate": 9.178393107648193e-05,
440
+ "loss": 1.8658,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.63,
445
+ "learning_rate": 9.15245719119055e-05,
446
+ "loss": 1.9358,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.64,
451
+ "learning_rate": 9.126156090420888e-05,
452
+ "loss": 1.9446,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.65,
457
+ "learning_rate": 9.099492118367123e-05,
458
+ "loss": 1.8403,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.66,
463
+ "learning_rate": 9.072467619969572e-05,
464
+ "loss": 1.9857,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.67,
469
+ "learning_rate": 9.045084971874738e-05,
470
+ "loss": 1.878,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.68,
475
+ "learning_rate": 9.017346582226289e-05,
476
+ "loss": 1.9484,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.68,
481
+ "learning_rate": 8.98925489045329e-05,
482
+ "loss": 1.8543,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.69,
487
+ "learning_rate": 8.960812367055646e-05,
488
+ "loss": 1.8613,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.7,
493
+ "learning_rate": 8.93202151338687e-05,
494
+ "loss": 1.887,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.71,
499
+ "learning_rate": 8.902884861434065e-05,
500
+ "loss": 1.8897,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.72,
505
+ "learning_rate": 8.873404973595285e-05,
506
+ "loss": 1.93,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.73,
511
+ "learning_rate": 8.843584442454158e-05,
512
+ "loss": 1.951,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.74,
517
+ "learning_rate": 8.81342589055191e-05,
518
+ "loss": 1.9591,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.74,
523
+ "learning_rate": 8.782931970156707e-05,
524
+ "loss": 1.8649,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.75,
529
+ "learning_rate": 8.752105363030414e-05,
530
+ "loss": 1.9752,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.76,
535
+ "learning_rate": 8.720948780192746e-05,
536
+ "loss": 1.9189,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.77,
541
+ "learning_rate": 8.689464961682852e-05,
542
+ "loss": 1.9188,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.78,
547
+ "learning_rate": 8.657656676318346e-05,
548
+ "loss": 1.9376,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.79,
553
+ "learning_rate": 8.625526721451798e-05,
554
+ "loss": 1.8662,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.8,
559
+ "learning_rate": 8.593077922724733e-05,
560
+ "loss": 1.8113,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.81,
565
+ "learning_rate": 8.560313133819125e-05,
566
+ "loss": 1.8575,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.81,
571
+ "learning_rate": 8.527235236206436e-05,
572
+ "loss": 1.8991,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.82,
577
+ "learning_rate": 8.493847138894209e-05,
578
+ "loss": 1.8475,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.83,
583
+ "learning_rate": 8.46015177817023e-05,
584
+ "loss": 1.8795,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.84,
589
+ "learning_rate": 8.426152117344313e-05,
590
+ "loss": 1.8596,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.85,
595
+ "learning_rate": 8.391851146487675e-05,
596
+ "loss": 1.9481,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.86,
601
+ "learning_rate": 8.357251882169994e-05,
602
+ "loss": 1.9213,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.87,
607
+ "learning_rate": 8.322357367194109e-05,
608
+ "loss": 1.9243,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.87,
613
+ "learning_rate": 8.28717067032843e-05,
614
+ "loss": 1.8764,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.88,
619
+ "learning_rate": 8.251694886037052e-05,
620
+ "loss": 1.9728,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.89,
625
+ "learning_rate": 8.215933134207618e-05,
626
+ "loss": 1.884,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.9,
631
+ "learning_rate": 8.179888559876943e-05,
632
+ "loss": 1.9589,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.91,
637
+ "learning_rate": 8.143564332954425e-05,
638
+ "loss": 2.017,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.92,
643
+ "learning_rate": 8.106963647943274e-05,
644
+ "loss": 1.9672,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.93,
649
+ "learning_rate": 8.070089723659566e-05,
650
+ "loss": 1.8711,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.94,
655
+ "learning_rate": 8.032945802949179e-05,
656
+ "loss": 1.9211,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.94,
661
+ "learning_rate": 7.995535152402591e-05,
662
+ "loss": 1.9019,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.95,
667
+ "learning_rate": 7.957861062067614e-05,
668
+ "loss": 1.8887,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.96,
673
+ "learning_rate": 7.919926845160037e-05,
674
+ "loss": 1.9923,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.97,
679
+ "learning_rate": 7.881735837772274e-05,
680
+ "loss": 1.8621,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.98,
685
+ "learning_rate": 7.843291398579946e-05,
686
+ "loss": 1.9584,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.99,
691
+ "learning_rate": 7.804596908546529e-05,
692
+ "loss": 1.943,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 1.0,
697
+ "learning_rate": 7.765655770625997e-05,
698
+ "loss": 1.8953,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 1.0,
703
+ "learning_rate": 7.726471409463572e-05,
704
+ "loss": 1.9394,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 1.01,
709
+ "learning_rate": 7.687047271094527e-05,
710
+ "loss": 1.91,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 1.02,
715
+ "learning_rate": 7.64738682264115e-05,
716
+ "loss": 1.9356,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 1.0,
721
+ "learning_rate": 7.607493552007805e-05,
722
+ "loss": 1.9421,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 1.01,
727
+ "learning_rate": 7.56737096757421e-05,
728
+ "loss": 1.8658,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 1.02,
733
+ "learning_rate": 7.527022597886895e-05,
734
+ "loss": 1.9158,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 1.03,
739
+ "learning_rate": 7.486451991348872e-05,
740
+ "loss": 1.9376,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 1.04,
745
+ "learning_rate": 7.445662715907591e-05,
746
+ "loss": 1.9365,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 1.05,
751
+ "learning_rate": 7.40465835874115e-05,
752
+ "loss": 1.8633,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 1.06,
757
+ "learning_rate": 7.363442525942826e-05,
758
+ "loss": 1.8888,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 1.06,
763
+ "learning_rate": 7.322018842203941e-05,
764
+ "loss": 1.8944,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 1.07,
769
+ "learning_rate": 7.280390950495093e-05,
770
+ "loss": 1.8644,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 1.08,
775
+ "learning_rate": 7.238562511745768e-05,
776
+ "loss": 1.9133,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 1.09,
781
+ "learning_rate": 7.196537204522401e-05,
782
+ "loss": 1.8339,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 1.1,
787
+ "learning_rate": 7.154318724704853e-05,
788
+ "loss": 1.8625,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 1.11,
793
+ "learning_rate": 7.111910785161381e-05,
794
+ "loss": 1.8877,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 1.12,
799
+ "learning_rate": 7.06931711542212e-05,
800
+ "loss": 1.9571,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 1.13,
805
+ "learning_rate": 7.026541461351092e-05,
806
+ "loss": 1.8926,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 1.13,
811
+ "learning_rate": 6.983587584816769e-05,
812
+ "loss": 1.8999,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 1.14,
817
+ "learning_rate": 6.940459263361249e-05,
818
+ "loss": 1.8957,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 1.15,
823
+ "learning_rate": 6.897160289868042e-05,
824
+ "loss": 1.9096,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 1.16,
829
+ "learning_rate": 6.853694472228503e-05,
830
+ "loss": 1.8695,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 1.17,
835
+ "learning_rate": 6.810065633006956e-05,
836
+ "loss": 1.8959,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 1.18,
841
+ "learning_rate": 6.766277609104518e-05,
842
+ "loss": 1.8242,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 1.19,
847
+ "learning_rate": 6.722334251421665e-05,
848
+ "loss": 1.8903,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 1.19,
853
+ "learning_rate": 6.678239424519575e-05,
854
+ "loss": 1.8978,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 1.2,
859
+ "learning_rate": 6.633997006280252e-05,
860
+ "loss": 1.8537,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 1.21,
865
+ "learning_rate": 6.589610887565503e-05,
866
+ "loss": 1.842,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 1.22,
871
+ "learning_rate": 6.545084971874738e-05,
872
+ "loss": 1.9226,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 1.23,
877
+ "learning_rate": 6.500423175001705e-05,
878
+ "loss": 1.8413,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 1.24,
883
+ "learning_rate": 6.4556294246901e-05,
884
+ "loss": 1.8876,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 1.25,
889
+ "learning_rate": 6.410707660288155e-05,
890
+ "loss": 1.902,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 1.26,
895
+ "learning_rate": 6.36566183240219e-05,
896
+ "loss": 1.9084,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 1.26,
901
+ "learning_rate": 6.320495902549183e-05,
902
+ "loss": 1.8314,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 1.27,
907
+ "learning_rate": 6.275213842808383e-05,
908
+ "loss": 1.9189,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 1.28,
913
+ "learning_rate": 6.229819635471972e-05,
914
+ "loss": 1.8738,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 1.29,
919
+ "learning_rate": 6.184317272694867e-05,
920
+ "loss": 1.8302,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 1.3,
925
+ "learning_rate": 6.138710756143613e-05,
926
+ "loss": 1.91,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 1.31,
931
+ "learning_rate": 6.093004096644481e-05,
932
+ "loss": 1.8405,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 1.32,
937
+ "learning_rate": 6.0472013138307235e-05,
938
+ "loss": 1.8767,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 1.32,
943
+ "learning_rate": 6.001306435789072e-05,
944
+ "loss": 1.8827,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 1.33,
949
+ "learning_rate": 5.9553234987055006e-05,
950
+ "loss": 1.938,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 1.34,
955
+ "learning_rate": 5.909256546510257e-05,
956
+ "loss": 1.8674,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 1.35,
961
+ "learning_rate": 5.86310963052223e-05,
962
+ "loss": 1.9161,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 1.36,
967
+ "learning_rate": 5.816886809092651e-05,
968
+ "loss": 1.8738,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 1.37,
973
+ "learning_rate": 5.770592147248196e-05,
974
+ "loss": 1.855,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 1.38,
979
+ "learning_rate": 5.7242297163334804e-05,
980
+ "loss": 1.895,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 1.39,
985
+ "learning_rate": 5.6778035936530184e-05,
986
+ "loss": 1.8702,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 1.39,
991
+ "learning_rate": 5.631317862112636e-05,
992
+ "loss": 1.9038,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 1.4,
997
+ "learning_rate": 5.584776609860414e-05,
998
+ "loss": 1.8444,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 1.41,
1003
+ "learning_rate": 5.538183929927152e-05,
1004
+ "loss": 1.9575,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 1.42,
1009
+ "learning_rate": 5.4915439198664164e-05,
1010
+ "loss": 1.9068,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 1.43,
1015
+ "learning_rate": 5.4448606813941805e-05,
1016
+ "loss": 1.8192,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 1.44,
1021
+ "learning_rate": 5.3981383200281e-05,
1022
+ "loss": 1.8179,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 1.45,
1027
+ "learning_rate": 5.351380944726465e-05,
1028
+ "loss": 1.9271,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 1.45,
1033
+ "learning_rate": 5.3045926675268344e-05,
1034
+ "loss": 1.8794,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 1.46,
1039
+ "learning_rate": 5.257777603184407e-05,
1040
+ "loss": 1.9613,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 1.47,
1045
+ "learning_rate": 5.210939868810156e-05,
1046
+ "loss": 1.9117,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 1.48,
1051
+ "learning_rate": 5.16408358350875e-05,
1052
+ "loss": 1.8796,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 1.49,
1057
+ "learning_rate": 5.117212868016303e-05,
1058
+ "loss": 1.881,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 1.5,
1063
+ "learning_rate": 5.07033184433798e-05,
1064
+ "loss": 1.9096,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 1.51,
1069
+ "learning_rate": 5.023444635385493e-05,
1070
+ "loss": 1.9094,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 1.52,
1075
+ "learning_rate": 4.9765553646145086e-05,
1076
+ "loss": 1.9166,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 1.52,
1081
+ "learning_rate": 4.9296681556620207e-05,
1082
+ "loss": 1.8408,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 1.53,
1087
+ "learning_rate": 4.882787131983698e-05,
1088
+ "loss": 1.9153,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 1.54,
1093
+ "learning_rate": 4.835916416491251e-05,
1094
+ "loss": 1.8751,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 1.55,
1099
+ "learning_rate": 4.789060131189845e-05,
1100
+ "loss": 1.9234,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 1.56,
1105
+ "learning_rate": 4.742222396815593e-05,
1106
+ "loss": 1.937,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 1.57,
1111
+ "learning_rate": 4.6954073324731654e-05,
1112
+ "loss": 1.9361,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 1.58,
1117
+ "learning_rate": 4.648619055273537e-05,
1118
+ "loss": 1.8353,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 1.58,
1123
+ "learning_rate": 4.601861679971901e-05,
1124
+ "loss": 1.9344,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 1.59,
1129
+ "learning_rate": 4.5551393186058213e-05,
1130
+ "loss": 1.788,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 1.6,
1135
+ "learning_rate": 4.508456080133584e-05,
1136
+ "loss": 1.8955,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 1.61,
1141
+ "learning_rate": 4.461816070072851e-05,
1142
+ "loss": 1.9064,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 1.62,
1147
+ "learning_rate": 4.415223390139588e-05,
1148
+ "loss": 1.858,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 1.63,
1153
+ "learning_rate": 4.368682137887365e-05,
1154
+ "loss": 1.8601,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 1.64,
1159
+ "learning_rate": 4.322196406346984e-05,
1160
+ "loss": 1.9734,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 1.65,
1165
+ "learning_rate": 4.27577028366652e-05,
1166
+ "loss": 1.8557,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 1.65,
1171
+ "learning_rate": 4.229407852751806e-05,
1172
+ "loss": 1.9431,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 1.66,
1177
+ "learning_rate": 4.183113190907349e-05,
1178
+ "loss": 1.9365,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 1.67,
1183
+ "learning_rate": 4.136890369477772e-05,
1184
+ "loss": 1.831,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 1.68,
1189
+ "learning_rate": 4.090743453489744e-05,
1190
+ "loss": 1.8685,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 1.69,
1195
+ "learning_rate": 4.0446765012945006e-05,
1196
+ "loss": 1.8634,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 1.7,
1201
+ "learning_rate": 3.998693564210929e-05,
1202
+ "loss": 1.8493,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 1.71,
1207
+ "learning_rate": 3.952798686169279e-05,
1208
+ "loss": 1.8875,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 1.71,
1213
+ "learning_rate": 3.9069959033555195e-05,
1214
+ "loss": 1.9417,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 1.72,
1219
+ "learning_rate": 3.861289243856388e-05,
1220
+ "loss": 1.8595,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 1.73,
1225
+ "learning_rate": 3.8156827273051365e-05,
1226
+ "loss": 1.8732,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 1.74,
1231
+ "learning_rate": 3.770180364528029e-05,
1232
+ "loss": 1.8268,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 1.75,
1237
+ "learning_rate": 3.7247861571916185e-05,
1238
+ "loss": 1.869,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 1.76,
1243
+ "learning_rate": 3.679504097450816e-05,
1244
+ "loss": 1.8882,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 1.77,
1249
+ "learning_rate": 3.6343381675978116e-05,
1250
+ "loss": 1.849,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 1.77,
1255
+ "learning_rate": 3.5892923397118474e-05,
1256
+ "loss": 1.88,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 1.78,
1261
+ "learning_rate": 3.5443705753099014e-05,
1262
+ "loss": 1.884,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 1.79,
1267
+ "learning_rate": 3.499576824998298e-05,
1268
+ "loss": 1.8501,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 1.8,
1273
+ "learning_rate": 3.4549150281252636e-05,
1274
+ "loss": 1.8654,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 1.81,
1279
+ "learning_rate": 3.410389112434499e-05,
1280
+ "loss": 1.8698,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 1.82,
1285
+ "learning_rate": 3.366002993719747e-05,
1286
+ "loss": 1.8402,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 1.83,
1291
+ "learning_rate": 3.321760575480427e-05,
1292
+ "loss": 1.8361,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 1.84,
1297
+ "learning_rate": 3.277665748578336e-05,
1298
+ "loss": 1.8392,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 1.84,
1303
+ "learning_rate": 3.233722390895483e-05,
1304
+ "loss": 1.9025,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 1.85,
1309
+ "learning_rate": 3.1899343669930446e-05,
1310
+ "loss": 1.8904,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 1.86,
1315
+ "learning_rate": 3.146305527771499e-05,
1316
+ "loss": 1.9215,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 1.87,
1321
+ "learning_rate": 3.102839710131958e-05,
1322
+ "loss": 1.8426,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 1.88,
1327
+ "learning_rate": 3.0595407366387504e-05,
1328
+ "loss": 1.9003,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 1.89,
1333
+ "learning_rate": 3.016412415183233e-05,
1334
+ "loss": 1.8339,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 1.9,
1339
+ "learning_rate": 2.9734585386489093e-05,
1340
+ "loss": 1.8936,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 1.9,
1345
+ "learning_rate": 2.93068288457788e-05,
1346
+ "loss": 1.8554,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 1.91,
1351
+ "learning_rate": 2.8880892148386198e-05,
1352
+ "loss": 1.9069,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 1.92,
1357
+ "learning_rate": 2.8456812752951485e-05,
1358
+ "loss": 1.9439,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 1.93,
1363
+ "learning_rate": 2.8034627954775994e-05,
1364
+ "loss": 1.888,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 1.94,
1369
+ "learning_rate": 2.7614374882542317e-05,
1370
+ "loss": 1.9194,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 1.95,
1375
+ "learning_rate": 2.719609049504911e-05,
1376
+ "loss": 1.895,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 1.96,
1381
+ "learning_rate": 2.677981157796059e-05,
1382
+ "loss": 1.8856,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 1.97,
1387
+ "learning_rate": 2.636557474057173e-05,
1388
+ "loss": 1.8132,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 1.97,
1393
+ "learning_rate": 2.5953416412588503e-05,
1394
+ "loss": 1.7674,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 1.98,
1399
+ "learning_rate": 2.554337284092411e-05,
1400
+ "loss": 1.8213,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 1.99,
1405
+ "learning_rate": 2.5135480086511302e-05,
1406
+ "loss": 1.9571,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 2.0,
1411
+ "learning_rate": 2.472977402113107e-05,
1412
+ "loss": 1.792,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 2.01,
1417
+ "learning_rate": 2.4326290324257894e-05,
1418
+ "loss": 1.9039,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 2.02,
1423
+ "learning_rate": 2.3925064479921984e-05,
1424
+ "loss": 1.8781,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 2.0,
1429
+ "learning_rate": 2.3526131773588516e-05,
1430
+ "loss": 1.7439,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 2.01,
1435
+ "learning_rate": 2.3129527289054713e-05,
1436
+ "loss": 1.8181,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 2.02,
1441
+ "learning_rate": 2.2735285905364306e-05,
1442
+ "loss": 1.8142,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 2.03,
1447
+ "learning_rate": 2.234344229374003e-05,
1448
+ "loss": 1.8818,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 2.04,
1453
+ "learning_rate": 2.195403091453473e-05,
1454
+ "loss": 1.8229,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 2.05,
1459
+ "learning_rate": 2.156708601420053e-05,
1460
+ "loss": 1.79,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 2.06,
1465
+ "learning_rate": 2.1182641622277273e-05,
1466
+ "loss": 1.8767,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 2.06,
1471
+ "learning_rate": 2.0800731548399637e-05,
1472
+ "loss": 1.8782,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 2.07,
1477
+ "learning_rate": 2.042138937932388e-05,
1478
+ "loss": 1.8134,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 2.08,
1483
+ "learning_rate": 2.0044648475974094e-05,
1484
+ "loss": 1.8738,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 2.09,
1489
+ "learning_rate": 1.9670541970508223e-05,
1490
+ "loss": 1.8041,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 2.1,
1495
+ "learning_rate": 1.9299102763404336e-05,
1496
+ "loss": 1.8396,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 2.11,
1501
+ "learning_rate": 1.893036352056728e-05,
1502
+ "loss": 1.9001,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 2.12,
1507
+ "learning_rate": 1.8564356670455767e-05,
1508
+ "loss": 1.7747,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 2.13,
1513
+ "learning_rate": 1.8201114401230585e-05,
1514
+ "loss": 1.9078,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 2.13,
1519
+ "learning_rate": 1.7840668657923835e-05,
1520
+ "loss": 1.9058,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 2.14,
1525
+ "learning_rate": 1.748305113962948e-05,
1526
+ "loss": 1.8619,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 2.15,
1531
+ "learning_rate": 1.7128293296715703e-05,
1532
+ "loss": 1.9236,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 2.16,
1537
+ "learning_rate": 1.677642632805892e-05,
1538
+ "loss": 1.8204,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 2.17,
1543
+ "learning_rate": 1.6427481178300062e-05,
1544
+ "loss": 1.8528,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 2.18,
1549
+ "learning_rate": 1.6081488535123275e-05,
1550
+ "loss": 1.8695,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 2.19,
1555
+ "learning_rate": 1.5738478826556886e-05,
1556
+ "loss": 1.8079,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 2.19,
1561
+ "learning_rate": 1.539848221829769e-05,
1562
+ "loss": 1.8897,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 2.2,
1567
+ "learning_rate": 1.5061528611057918e-05,
1568
+ "loss": 1.8215,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 2.21,
1573
+ "learning_rate": 1.4727647637935649e-05,
1574
+ "loss": 1.8931,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 2.22,
1579
+ "learning_rate": 1.4396868661808777e-05,
1580
+ "loss": 1.7798,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 2.23,
1585
+ "learning_rate": 1.4069220772752683e-05,
1586
+ "loss": 1.8395,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 2.24,
1591
+ "learning_rate": 1.3744732785482034e-05,
1592
+ "loss": 1.7538,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 2.25,
1597
+ "learning_rate": 1.3423433236816563e-05,
1598
+ "loss": 1.753,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 2.26,
1603
+ "learning_rate": 1.3105350383171483e-05,
1604
+ "loss": 1.9531,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 2.26,
1609
+ "learning_rate": 1.2790512198072558e-05,
1610
+ "loss": 1.8359,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 2.27,
1615
+ "learning_rate": 1.2478946369695882e-05,
1616
+ "loss": 1.901,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 2.28,
1621
+ "learning_rate": 1.2170680298432935e-05,
1622
+ "loss": 1.8663,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 2.29,
1627
+ "learning_rate": 1.1865741094480909e-05,
1628
+ "loss": 1.8337,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 2.3,
1633
+ "learning_rate": 1.1564155575458413e-05,
1634
+ "loss": 1.8878,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 2.31,
1639
+ "learning_rate": 1.126595026404717e-05,
1640
+ "loss": 1.8277,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 2.32,
1645
+ "learning_rate": 1.0971151385659356e-05,
1646
+ "loss": 1.8477,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 2.32,
1651
+ "learning_rate": 1.067978486613131e-05,
1652
+ "loss": 1.945,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 2.33,
1657
+ "learning_rate": 1.0391876329443533e-05,
1658
+ "loss": 1.7664,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 2.34,
1663
+ "learning_rate": 1.010745109546713e-05,
1664
+ "loss": 1.8162,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 2.35,
1669
+ "learning_rate": 9.826534177737107e-06,
1670
+ "loss": 1.8063,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 2.36,
1675
+ "learning_rate": 9.549150281252633e-06,
1676
+ "loss": 1.8191,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 2.37,
1681
+ "learning_rate": 9.275323800304286e-06,
1682
+ "loss": 1.8882,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 2.38,
1687
+ "learning_rate": 9.005078816328771e-06,
1688
+ "loss": 1.8194,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 2.39,
1693
+ "learning_rate": 8.738439095791123e-06,
1694
+ "loss": 1.8051,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 2.39,
1699
+ "learning_rate": 8.475428088094517e-06,
1700
+ "loss": 1.8454,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 2.4,
1705
+ "learning_rate": 8.216068923518072e-06,
1706
+ "loss": 1.9187,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 2.41,
1711
+ "learning_rate": 7.960384411182709e-06,
1712
+ "loss": 1.8383,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 2.42,
1717
+ "learning_rate": 7.708397037045129e-06,
1718
+ "loss": 1.9316,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 2.43,
1723
+ "learning_rate": 7.460128961920432e-06,
1724
+ "loss": 1.8221,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 2.44,
1729
+ "learning_rate": 7.215602019533041e-06,
1730
+ "loss": 1.8184,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 2.45,
1735
+ "learning_rate": 6.974837714596733e-06,
1736
+ "loss": 1.8572,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 2.45,
1741
+ "learning_rate": 6.737857220923305e-06,
1742
+ "loss": 1.8122,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 2.46,
1747
+ "learning_rate": 6.50468137956049e-06,
1748
+ "loss": 1.8512,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 2.47,
1753
+ "learning_rate": 6.275330696959108e-06,
1754
+ "loss": 1.8534,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 2.48,
1759
+ "learning_rate": 6.049825343169652e-06,
1760
+ "loss": 1.7876,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 2.49,
1765
+ "learning_rate": 5.828185150068472e-06,
1766
+ "loss": 1.9367,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 2.5,
1771
+ "learning_rate": 5.610429609613616e-06,
1772
+ "loss": 1.8474,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 2.51,
1777
+ "learning_rate": 5.3965778721306755e-06,
1778
+ "loss": 1.8483,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 2.52,
1783
+ "learning_rate": 5.186648744628636e-06,
1784
+ "loss": 1.9065,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 2.52,
1789
+ "learning_rate": 4.980660689145855e-06,
1790
+ "loss": 1.8586,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 2.53,
1795
+ "learning_rate": 4.778631821126473e-06,
1796
+ "loss": 1.8758,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 2.54,
1801
+ "learning_rate": 4.580579907827287e-06,
1802
+ "loss": 1.8067,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 2.55,
1807
+ "learning_rate": 4.386522366755169e-06,
1808
+ "loss": 1.8208,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 2.56,
1813
+ "learning_rate": 4.1964762641353294e-06,
1814
+ "loss": 1.7676,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 2.57,
1819
+ "learning_rate": 4.010458313410459e-06,
1820
+ "loss": 1.799,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 2.58,
1825
+ "learning_rate": 3.8284848737708325e-06,
1826
+ "loss": 1.7849,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 2.58,
1831
+ "learning_rate": 3.6505719487156697e-06,
1832
+ "loss": 1.7941,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 2.59,
1837
+ "learning_rate": 3.476735184645674e-06,
1838
+ "loss": 1.8647,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 2.6,
1843
+ "learning_rate": 3.306989869487037e-06,
1844
+ "loss": 1.8437,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 2.61,
1849
+ "learning_rate": 3.1413509313469812e-06,
1850
+ "loss": 1.8539,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 2.62,
1855
+ "learning_rate": 2.9798329372008825e-06,
1856
+ "loss": 1.8604,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 2.63,
1861
+ "learning_rate": 2.8224500916111952e-06,
1862
+ "loss": 1.7929,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 2.64,
1867
+ "learning_rate": 2.6692162354782944e-06,
1868
+ "loss": 1.8269,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 2.65,
1873
+ "learning_rate": 2.520144844823169e-06,
1874
+ "loss": 1.8311,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 2.65,
1879
+ "learning_rate": 2.3752490296023387e-06,
1880
+ "loss": 1.8252,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 2.66,
1885
+ "learning_rate": 2.2345415325549123e-06,
1886
+ "loss": 1.853,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 2.67,
1891
+ "learning_rate": 2.0980347280818935e-06,
1892
+ "loss": 1.8513,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 2.68,
1897
+ "learning_rate": 1.9657406211579966e-06,
1898
+ "loss": 1.918,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 2.69,
1903
+ "learning_rate": 1.8376708462757796e-06,
1904
+ "loss": 1.838,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 2.7,
1909
+ "learning_rate": 1.713836666422569e-06,
1910
+ "loss": 1.8308,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 2.71,
1915
+ "learning_rate": 1.594248972089879e-06,
1916
+ "loss": 1.8581,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 2.71,
1921
+ "learning_rate": 1.4789182803156332e-06,
1922
+ "loss": 1.8513,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 2.72,
1927
+ "learning_rate": 1.3678547337593494e-06,
1928
+ "loss": 1.8293,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 2.73,
1933
+ "learning_rate": 1.2610680998100478e-06,
1934
+ "loss": 1.8001,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 2.74,
1939
+ "learning_rate": 1.1585677697273312e-06,
1940
+ "loss": 1.8864,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 2.75,
1945
+ "learning_rate": 1.060362757815453e-06,
1946
+ "loss": 1.8015,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 2.76,
1951
+ "learning_rate": 9.664617006305664e-07,
1952
+ "loss": 1.8198,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 2.77,
1957
+ "learning_rate": 8.768728562211947e-07,
1958
+ "loss": 1.876,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 2.77,
1963
+ "learning_rate": 7.916041034019772e-07,
1964
+ "loss": 1.879,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 2.78,
1969
+ "learning_rate": 7.106629410607691e-07,
1970
+ "loss": 1.7792,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 2.79,
1975
+ "learning_rate": 6.340564874991905e-07,
1976
+ "loss": 1.9045,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 2.8,
1981
+ "learning_rate": 5.617914798065616e-07,
1982
+ "loss": 1.7875,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 2.81,
1987
+ "learning_rate": 4.938742732674529e-07,
1988
+ "loss": 1.7886,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 2.82,
1993
+ "learning_rate": 4.303108408027667e-07,
1994
+ "loss": 1.8113,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 2.83,
1999
+ "learning_rate": 3.7110677244445167e-07,
2000
+ "loss": 1.8897,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 2.84,
2005
+ "learning_rate": 3.162672748438844e-07,
2006
+ "loss": 1.8716,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 2.84,
2011
+ "learning_rate": 2.657971708139917e-07,
2012
+ "loss": 1.8585,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 2.85,
2017
+ "learning_rate": 2.1970089890509527e-07,
2018
+ "loss": 1.774,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 2.86,
2023
+ "learning_rate": 1.7798251301458513e-07,
2024
+ "loss": 1.9125,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 2.87,
2029
+ "learning_rate": 1.4064568203037697e-07,
2030
+ "loss": 1.8269,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 2.88,
2035
+ "learning_rate": 1.076936895082925e-07,
2036
+ "loss": 1.815,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 2.89,
2041
+ "learning_rate": 7.912943338324596e-08,
2042
+ "loss": 1.8106,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 2.9,
2047
+ "learning_rate": 5.4955425714431353e-08,
2048
+ "loss": 1.7958,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 2.9,
2053
+ "learning_rate": 3.517379246436026e-08,
2054
+ "loss": 1.8876,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 2.91,
2059
+ "learning_rate": 1.9786273311928062e-08,
2060
+ "loss": 1.8588,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 2.92,
2065
+ "learning_rate": 8.794221499408561e-09,
2066
+ "loss": 1.8221,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 2.93,
2071
+ "learning_rate": 2.198603713432501e-09,
2072
+ "loss": 1.853,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 2.94,
2077
+ "learning_rate": 0.0,
2078
+ "loss": 1.7843,
2079
+ "step": 345
2080
+ }
2081
+ ],
2082
+ "logging_steps": 1,
2083
+ "max_steps": 345,
2084
+ "num_input_tokens_seen": 0,
2085
+ "num_train_epochs": 3,
2086
+ "save_steps": 115,
2087
+ "total_flos": 7.812884393509257e+18,
2088
+ "train_batch_size": 4,
2089
+ "trial_name": null,
2090
+ "trial_params": null
2091
+ }
checkpoint-345/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e39737902bc1aa013dd8f6b24d000cda19aabe9b71208ae812379be1726ec8c
3
+ size 4795
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/Mixtral-8x7B-v0.1",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mixtral",
15
+ "num_attention_heads": 32,
16
+ "num_experts_per_tok": 2,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 8,
19
+ "num_local_experts": 8,
20
+ "output_router_logits": true,
21
+ "quantization_config": {
22
+ "bnb_4bit_compute_dtype": "bfloat16",
23
+ "bnb_4bit_quant_type": "nf4",
24
+ "bnb_4bit_use_double_quant": true,
25
+ "llm_int8_enable_fp32_cpu_offload": false,
26
+ "llm_int8_has_fp16_weight": false,
27
+ "llm_int8_skip_modules": null,
28
+ "llm_int8_threshold": 6.0,
29
+ "load_in_4bit": true,
30
+ "load_in_8bit": false,
31
+ "quant_method": "bitsandbytes"
32
+ },
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_theta": 1000000.0,
35
+ "router_aux_loss_coef": 0.02,
36
+ "router_z_loss_coef": 0.001,
37
+ "sliding_window": null,
38
+ "tie_word_embeddings": false,
39
+ "torch_dtype": "bfloat16",
40
+ "transformers_version": "4.37.0.dev0",
41
+ "use_cache": false,
42
+ "vocab_size": 32000
43
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "trust_remote_code": true,
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false,
43
+ "use_fast": true
44
+ }