Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,63 @@
|
|
1 |
---
|
2 |
-
license: gemma
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: [apache-2.0, gemma]
|
3 |
+
datasets:
|
4 |
+
- traintogpb/aihub-koen-translation-integrated-base-10m
|
5 |
+
language:
|
6 |
+
- ko
|
7 |
+
- en
|
8 |
+
pipeline_tag: translation
|
9 |
+
tags:
|
10 |
+
- gemma
|
11 |
---
|
12 |
+
# Gemago Model Card
|
13 |
+
|
14 |
+
**Original Gemma Model Page**: [Gemma](https://ai.google.dev/gemma/docs)
|
15 |
+
|
16 |
+
**Model Page On Github**: [Gemago](https://github.com/deveworld/Gemago)
|
17 |
+
|
18 |
+
**Resources and Technical Documentation**:
|
19 |
+
* [Blog(Korean)](https://blog.worldsw.dev/tag/gemago/)
|
20 |
+
* [Original Google's Gemma-2B](https://huggingface.co/google/gemma-2b)
|
21 |
+
* [Training Code @ Github: Gemma-EasyLM (Orginial by Beomi)](https://github.com/deveworld/Gemma-EasyLM/tree/2b)
|
22 |
+
|
23 |
+
**Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent)
|
24 |
+
|
25 |
+
**Authors**: Orginal Google, Fine-tuned by DevWorld
|
26 |
+
|
27 |
+
## Model Information
|
28 |
+
|
29 |
+
Translate English/Korean to Korean/English.
|
30 |
+
|
31 |
+
### Description
|
32 |
+
|
33 |
+
Gemago is a lightweight English-and-Korean translation model based on Gemma.
|
34 |
+
|
35 |
+
### Context Length
|
36 |
+
Models are trained on a context length of 8192 tokens, which is equivalent to Gemma.
|
37 |
+
|
38 |
+
### Usage
|
39 |
+
|
40 |
+
Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U keras keras-nlp`, then copy the snippet from the section that is relevant for your usecase.
|
41 |
+
|
42 |
+
#### Running the model with transformers
|
43 |
+
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deveworld/Gemago/blob/main/Gemago_2b_Infer.ipynb)
|
44 |
+
|
45 |
+
```python
|
46 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
47 |
+
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained("devworld/gemago-2b")
|
49 |
+
model = AutoModelForCausalLM.from_pretrained("devworld/gemago-2b")
|
50 |
+
|
51 |
+
def gen(text, max_length):
|
52 |
+
input_ids = tokenizer(text, return_tensors="pt")
|
53 |
+
outputs = model.generate(**input_ids, max_length=max_length)
|
54 |
+
return tokenizer.decode(outputs[0])
|
55 |
+
|
56 |
+
def e2k(e):
|
57 |
+
input_text = f"English:\n{e}\n\nKorean:\n"
|
58 |
+
return gen(input_text, 1024)
|
59 |
+
|
60 |
+
def k2e(k):
|
61 |
+
input_text = f"Korean:\n{k}\n\nEnglish:\n"
|
62 |
+
return gen(input_text, 1024)
|
63 |
+
```
|