File size: 14,121 Bytes
43517f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
import torch.nn as nn
from transformers import CLIPVisionModel, PretrainedConfig
from transformers import CLIPVisionConfig
from transformers.utils import logging
from datetime import datetime
logger = logging.get_logger(__name__)
CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
attention_dropout=0.0,
dropout=0.0,
hidden_act="quick_gelu",
hidden_size=1024,
image_size=336,
initializer_factor=1.0,
initializer_range=0.02,
intermediate_size=4096,
layer_norm_eps=1e-05,
num_attention_heads=16,
num_channels=3,
num_hidden_layers=24,
patch_size=14,
projection_dim=768
)
class Phi3ImageEmbedding(nn.Module):
"""Phi3 Image embedding."""
def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
super().__init__()
# n_embed or hidden_size
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
self.drop = nn.Dropout(embd_drop)
else:
self.drop = None
self.wte = wte
if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
self.img_processor = CLIPVisionModel(clip_config)
image_dim_out = config.img_processor['image_dim_out']
self.num_img_tokens = config.img_processor['num_img_tokens']
else:
raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
self.image_dim_out = image_dim_out
self.img_sizes = None
# global_gn and sub_gn for hd transform, serves as line separator
self.use_hd_transform = kwargs.get('use_hd_transform', False)
self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
# with_hd_transform and with_learnable_separator should have same value
assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
if self.with_learnable_separator:
assert self.use_hd_transform, 'learnable separator is only for hd transform'
# 1024 * 4, merge spatial to channel dimension
self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
projection_cls = kwargs.get('projection_cls', 'linear')
if projection_cls == 'linear':
self.img_projection = nn.Linear(image_dim_out, hidden_size)
elif projection_cls == 'mlp' and self.use_hd_transform:
dim_projection = hidden_size
depth = 2
layers = [nn.Linear(image_dim_out * 4, dim_projection)]
for _ in range(1, depth):
layers.extend([nn.GELU(),
nn.Linear(dim_projection, dim_projection)])
self.img_projection = nn.Sequential(*layers)
elif projection_cls == 'mlp':
dim_projection = hidden_size
depth = 2
layers = [nn.Linear(image_dim_out, dim_projection)]
for _ in range(1, depth):
layers.extend([nn.GELU(),
nn.Linear(dim_projection, dim_projection)])
self.img_projection = nn.Sequential(*layers)
else:
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
self.vocab_size = config.vocab_size
self.img_features = None
if isinstance(config.img_processor, dict):
self.layer_idx = config.img_processor.get('layer_idx', -2)
self.type_feature = config.img_processor.get('type_feature', 'patch')
else:
self.layer_idx = -2
self.type_feature = 'patch'
def set_img_features(self, img_features: torch.FloatTensor) -> None:
self.img_features = img_features
def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
self.img_sizes = img_sizes
def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
LAYER_IDX = self.layer_idx
TYPE_FEATURE = self.type_feature
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
img_feature = img_processor_output.hidden_states[LAYER_IDX]
if TYPE_FEATURE == "patch":
patch_feature = img_feature[:, 1:]
return patch_feature
if TYPE_FEATURE == "cls_patch":
return img_feature
raise NotImplementedError
def forward(self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None) -> torch.FloatTensor:
MAX_INPUT_ID = int(1e9)
img_embeds = pixel_values
img_sizes = image_sizes
if self.img_features is not None:
img_embeds = self.img_features.clone()
self.img_features = None
if self.img_sizes is not None:
img_sizes = self.img_sizes
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
with torch.no_grad():
positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=False)
select = False
if isinstance(self.img_projection, nn.Sequential):
target_device = self.img_projection[0].bias.device
target_dtype = self.img_projection[0].bias.dtype
else: # It's a single nn.Linear layer
target_device = self.img_projection.bias.device
target_dtype = self.img_projection.bias.dtype
if len(positions.tolist()) > 0:
with torch.no_grad():
g_values = abs(input_ids[positions[:, 0], positions[:, 1]])
if self.use_hd_transform and img_sizes is not None and len(img_sizes):
hd_transform = True
assert img_embeds.ndim == 5, f'img_embeds size: {img_embeds.size()}, expect 5D tensor for hd transform'
# img_embeds: (num_images, max_num_crops, 3, H, W)
# img_sizes: (num_images, 2).view(1, -1)
start_time = datetime.now()
bs = img_embeds.shape[0]
# Nx(HW)xC
img_features = self.get_img_features(img_embeds.flatten(0, 1))
base_feat_height = base_feat_width = int(img_features.shape[1] ** 0.5)
assert base_feat_height == 24 and base_feat_width == 24, f'base_feat_height: {base_feat_height}, base_feat_width: {base_feat_width}, expect 24x24 features for hd transform'
# bs x max_num_crops x (24x24) x C
img_features = img_features.view(bs, -1, base_feat_height * base_feat_width, self.image_dim_out)
C = self.image_dim_out
H = base_feat_height
output_imgs = []
output_len = []
# training is tensor, inference is list
if isinstance(img_sizes, torch.Tensor):
img_sizes = img_sizes.view(-1, 2)
for _bs in range(bs):
h, w = img_sizes[_bs]
h = h // 336
w = w // 336
B_ = h * w
# 1 x (24x24) x 1024
global_img_feature = img_features[_bs, :1]
# 1 x 12 x 12 x 4096
glb_img = global_img_feature.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous()
temp_glb_GN = self.sub_GN.repeat(1, H//2, 1, 1)
# 1 x 156 x 4096
glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C)
# (max_num_crops-1) x (12x12) x C
sub_img = img_features[_bs, 1:]
# 16x574x1024
# get rid of padding sub_img
sub_img = sub_img[:B_]
# (num_crops, 12, 2, 12, 2, 1024) -> (num_crops, 12, 12, 2, 2, 1024) -> (num_crops, 12*12, 4*1024)
sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous()
sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C)
temp_sub_GN = self.sub_GN.repeat(1, h*12, 1, 1)
sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C)
# (1, num_img_tokens, 1024*4)
# glb + sub
if self.hd_transform_order == 'glb_sub':
output_imgs.append(torch.cat([glb_img, self.glb_GN, sub_img], dim=1))
elif self.hd_transform_order == 'sub_glb':
output_imgs.append(torch.cat([sub_img, self.glb_GN, glb_img], dim=1))
else:
raise NotImplementedError(f'hd_transform_order = {self.hd_transform_order}, not implemented')
temp_len = int((h*w+1)*144 + 1 + (h+1)*12)
assert temp_len == output_imgs[-1].shape[1], f'temp_len: {temp_len}, output_imgs[-1].shape[1]: {output_imgs[-1].shape[1]}'
output_len.append(temp_len)
num_img_tokens = output_len
img_set_tensor = []
for _output_img in output_imgs:
img_feature_proj = self.img_projection(_output_img.to(target_device).to(target_dtype))
img_set_tensor.append(img_feature_proj)
logger.info(f'img_embeds size: {img_embeds.size()}, image sizes: {img_sizes} loading time {datetime.now() - start_time}')
elif img_embeds.ndim == 4:
selected_g_values = g_values[::self.num_img_tokens]
assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}'
start_time = datetime.now()
tt = (
self.get_img_features(img_embeds)
.to(target_device)
.to(target_dtype)
.reshape(-1, self.image_dim_out)
)
logger.info(f'img_embeds size: {img_embeds.size()}, loading time {datetime.now() - start_time}')
img_set_tensor = self.img_projection(tt) # adapted visual features.
elif img_embeds.ndim == 3:
selected_g_values = g_values[::self.num_img_tokens]
assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}'
tt = (
img_embeds
.to(target_device)
.to(target_dtype)
.view(-1, self.image_dim_out)
)
img_set_tensor = self.img_projection(tt) # adapted visual features.
else:
raise NotImplementedError
select = True
with torch.no_grad():
input_ids.clamp_min_(0).clamp_max_(self.vocab_size)
hidden_states = self.wte(input_ids)
if select:
if hd_transform:
idx = 0
for i, cnt in enumerate(num_img_tokens):
hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = (
img_set_tensor[i]
.to(hidden_states.dtype)
.to(hidden_states.device)
)
idx += cnt
else:
idx = 0
assert len(selected_g_values) * self.num_img_tokens == len(img_set_tensor), f'len(selected_g_values) * self.num_img_tokens = {len(selected_g_values) * self.num_img_tokens}, len(img_set_tensor) = {len(img_set_tensor)}'
for i, g in enumerate(selected_g_values):
cnt = self.num_img_tokens
hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = (
img_set_tensor[i * cnt : (i + 1) * cnt]
.to(hidden_states.dtype)
.to(hidden_states.device)
)
idx += cnt
if self.drop is not None:
hidden_states = self.drop(hidden_states)
return hidden_states
|