DavidCollier
commited on
Commit
•
22932ac
1
Parent(s):
ff22085
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 259.35 +/- 17.85
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f87874e5680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f87874e5710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f87874e57a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f87874e5830>", "_build": "<function ActorCriticPolicy._build at 0x7f87874e58c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f87874e5950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f87874e59e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f87874e5a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f87874e5b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f87874e5b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f87874e5c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8787539270>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651830617.4921982, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADOLz17qrC6nvIOuFcHFrNPIxY6JD0jNwAAgD8AAIA/Grl0PVJQ57lUixe46SM9s3mxrTrNljU3AACAPwAAgD9A5iQ+M2ymP1UWKD+bArC+gtAdPlFdjD4AAAAAAAAAAKaOrT2uZY26eYGfOenRkTaPLTw6BEm6uAAAgD8AAIA/za2TPK6fnroGvaA6kN1KNbLV87q3mTg0AACAPwAAgD8A07W8H0XuuQBO1bpe9ak0MH4Ku8Po+jkAAIA/AACAP+beGD17Qqm6rmBruevSwLUQsWY6/EeHOAAAgD8AAIA/M9nUPI/eYbo96U05ANTLM1D2gzoGUW+4AACAPwAAgD9afF4+vXorPFNOejkWlX43hE7CPTlrkrgAAIA/AACAP5riijzhkJO6bICtusunqbVVToc6TvHIOQAAgD8AAIA/TcFPvVy6WD5SDR8+/lJwvgB4eTyS4KE7AAAAAAAAAADWKq0+P79gP8ZPrj7EMqy+axlbPiDEzrwAAAAAAAAAAM26U724lrW5jbFWuiMvBLZcd0I7wvh8OQAAgD8AAIA/GtW3PZwCMLxWadi91Ws3vZUAGT0btkQ+AACAPwAAgD9m64Q94eiAupbwQLmNvDM2HkLkuV1XWjgAAIA/AACAPxpScj0pZBm61gzrur6JubUp4gi7+ZELOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9wFIbWJrYUCUhpRSlIwBbJRN6AOMAXSUR0CUBPEit7rtdX2UKGgGaAloD0MINxjqsMKdYkCUhpRSlGgVTegDaBZHQJQFzAZbY9R1fZQoaAZoCWgPQwhEatrFNElgQJSGlFKUaBVN6ANoFkdAlAZ1tKqXGHV9lChoBmgJaA9DCLXhsDRwUGNAlIaUUpRoFU3oA2gWR0CUCQz/IbOvdX2UKGgGaAloD0MIyHn/HycOZ0CUhpRSlGgVTegDaBZHQJQKLIyTINp1fZQoaAZoCWgPQwjMe5xpQqJiQJSGlFKUaBVN6ANoFkdAlC9RI8QqZ3V9lChoBmgJaA9DCGrC9pOx82JAlIaUUpRoFU3oA2gWR0CUL64S6DoRdX2UKGgGaAloD0MI/kemQyfsYECUhpRSlGgVTegDaBZHQJQ2FN5+pfh1fZQoaAZoCWgPQwiD3EWYot9gQJSGlFKUaBVN6ANoFkdAlDc4JZ4fOnV9lChoBmgJaA9DCL048dUOjmFAlIaUUpRoFU3oA2gWR0CUPo1gH/tIdX2UKGgGaAloD0MISaDBpk5VYECUhpRSlGgVTegDaBZHQJRFCX/o7mx1fZQoaAZoCWgPQwhIh4cwfsRdQJSGlFKUaBVN6ANoFkdAlEcnObAk9nV9lChoBmgJaA9DCCm0rPvH42BAlIaUUpRoFU3oA2gWR0CUTO7vG6wudX2UKGgGaAloD0MISdqNPqabckCUhpRSlGgVTcMCaBZHQJRRxgPVd5Z1fZQoaAZoCWgPQwixijcyD65hQJSGlFKUaBVN6ANoFkdAlF98pgCwKXV9lChoBmgJaA9DCAaFQZnGGmZAlIaUUpRoFU3oA2gWR0CUYIR02cawdX2UKGgGaAloD0MIHO+OjFUuZ0CUhpRSlGgVTegDaBZHQJRl/V9Wp611fZQoaAZoCWgPQwj4qL9eYVteQJSGlFKUaBVN6ANoFkdAlGZHFLnLaHV9lChoBmgJaA9DCAD/lCpR7V9AlIaUUpRoFU3oA2gWR0CUZ7rdFfAsdX2UKGgGaAloD0MI4QhSKXYyYECUhpRSlGgVTegDaBZHQJRqSwRoRI11fZQoaAZoCWgPQwig+Zy73bpkQJSGlFKUaBVN6ANoFkdAlGtvlEJBxHV9lChoBmgJaA9DCKZ7ndSXgTZAlIaUUpRoFUv6aBZHQJRw3BJqZc91fZQoaAZoCWgPQwghkiHH1nJgQJSGlFKUaBVN6ANoFkdAlI+33cpLEnV9lChoBmgJaA9DCIqtoGkJamRAlIaUUpRoFU3oA2gWR0CUkAfIS13MdX2UKGgGaAloD0MIukp319mrZECUhpRSlGgVTegDaBZHQJSVy0zCUHJ1fZQoaAZoCWgPQwgqdF5jlylnQJSGlFKUaBVN6ANoFkdAlJbm7nPmgnV9lChoBmgJaA9DCLzP8dFi52ZAlIaUUpRoFU3oA2gWR0CUnfd+G47SdX2UKGgGaAloD0MI39416EsZQECUhpRSlGgVTQgBaBZHQJShhlvqC6J1fZQoaAZoCWgPQwhOY3staN5vQJSGlFKUaBVNtAFoFkdAlKIYOUdJa3V9lChoBmgJaA9DCDSitDd4g2NAlIaUUpRoFU3oA2gWR0CUpAqp97WvdX2UKGgGaAloD0MIJsgIqHABYUCUhpRSlGgVTegDaBZHQJSl6u0TlDF1fZQoaAZoCWgPQwghyhe0kENjQJSGlFKUaBVN6ANoFkdAlKpzGDL8rXV9lChoBmgJaA9DCKFl3T8WAmNAlIaUUpRoFU3oA2gWR0CUrwTj/+85dX2UKGgGaAloD0MIUS/4NCegbkCUhpRSlGgVTX8BaBZHQJSwDw9aEBd1fZQoaAZoCWgPQwjP91PjpUxgQJSGlFKUaBVN6ANoFkdAlLxbNKRMe3V9lChoBmgJaA9DCL3EWKbfVm1AlIaUUpRoFU2cAWgWR0CUvXDr7fpEdX2UKGgGaAloD0MItvXTf9ZvZUCUhpRSlGgVTegDaBZHQJTC7hn8Koh1fZQoaAZoCWgPQwgbhSSzelNnQJSGlFKUaBVN6ANoFkdAlMM/aL4ve3V9lChoBmgJaA9DCCqr6XoiVWFAlIaUUpRoFU3oA2gWR0CUxLKNyYG/dX2UKGgGaAloD0MIPfIHA8+7Y0CUhpRSlGgVTegDaBZHQJTHTp3X7Lt1fZQoaAZoCWgPQwjYuWkzzhZmQJSGlFKUaBVN6ANoFkdAlM7Q/PgNw3V9lChoBmgJaA9DCJ0PzxLkkWdAlIaUUpRoFU3oA2gWR0CU7otyPuG9dX2UKGgGaAloD0MIJv+Tv/t5Z0CUhpRSlGgVTegDaBZHQJT1QcWCVbB1fZQoaAZoCWgPQwiSk4lbxS1xQJSGlFKUaBVNxAJoFkdAlPbjk6tDD3V9lChoBmgJaA9DCNDVVuwvu+4/lIaUUpRoFUv+aBZHQJT7nG6wt8N1fZQoaAZoCWgPQwh8DFacatRiQJSGlFKUaBVN6ANoFkdAlP4LUgB91HV9lChoBmgJaA9DCKiN6nSgr2VAlIaUUpRoFU3oA2gWR0CVAd8GLUCrdX2UKGgGaAloD0MItYzUeyocZkCUhpRSlGgVTegDaBZHQJUD0Kneizt1fZQoaAZoCWgPQwilEp7Qa0dlQJSGlFKUaBVN6ANoFkdAlQW+glF+eHV9lChoBmgJaA9DCKfoSC5/GGRAlIaUUpRoFU3oA2gWR0CVDvGgi/widX2UKGgGaAloD0MI3c8pyM/gZUCUhpRSlGgVTegDaBZHQJUP6mLtNSJ1fZQoaAZoCWgPQwjc9j3qr1VhQJSGlFKUaBVN6ANoFkdAlRulWCEpRXV9lChoBmgJaA9DCLlRZK2h5GVAlIaUUpRoFU3oA2gWR0CVHJ/sVtXQdX2UKGgGaAloD0MIDvW7sHV0cECUhpRSlGgVTZYBaBZHQJUg4Glhw2l1fZQoaAZoCWgPQwjtnjwsVFRvQJSGlFKUaBVN8QJoFkdAlSGChew9q3V9lChoBmgJaA9DCAeaz7nb9GFAlIaUUpRoFU3oA2gWR0CVIcI5YHPedX2UKGgGaAloD0MITFKZYg5FY0CUhpRSlGgVTegDaBZHQJUiAt+TeO51fZQoaAZoCWgPQwi/Y3jsZ1ZjQJSGlFKUaBVN6ANoFkdAlSM4Mz/IbXV9lChoBmgJaA9DCJl+iXjrWmFAlIaUUpRoFU3oA2gWR0CVJWYraufVdX2UKGgGaAloD0MIIR6Jl+fxcECUhpRSlGgVTX8DaBZHQJUvU7Njbzt1fZQoaAZoCWgPQwiB6EmZ1P5UQJSGlFKUaBVNDQFoFkdAlUzQmVqveXV9lChoBmgJaA9DCA6Fz9ZBLHFAlIaUUpRoFU0pAmgWR0CVTQbR4QjEdX2UKGgGaAloD0MIh4px/iafbUCUhpRSlGgVTV4BaBZHQJVR4qiGnGd1fZQoaAZoCWgPQwhH5/wUxy5jQJSGlFKUaBVN6ANoFkdAlVKoxgy/K3V9lChoBmgJaA9DCK3boPZb1m5AlIaUUpRoFU3aA2gWR0CVVgc4HX2/dX2UKGgGaAloD0MIkh/xK9bpXkCUhpRSlGgVTegDaBZHQJVY3V6NVBF1fZQoaAZoCWgPQwiWkuUklOJfQJSGlFKUaBVN6ANoFkdAlVxfCQ9zO3V9lChoBmgJaA9DCDf92Y8Uf2JAlIaUUpRoFU3oA2gWR0CVXhgTAWSEdX2UKGgGaAloD0MIDcUdb/Llb0CUhpRSlGgVTd8BaBZHQJVoD6P8yet1fZQoaAZoCWgPQwh+dOrK50NxQJSGlFKUaBVN4QNoFkdAlWkwsXizcHV9lChoBmgJaA9DCHIW9rRDiG5AlIaUUpRoFU0wAWgWR0CVa0XrMTvidX2UKGgGaAloD0MIsOjWa/oHY0CUhpRSlGgVTegDaBZHQJVz97XxvvV1fZQoaAZoCWgPQwh9XvHUo05kQJSGlFKUaBVN6ANoFkdAlXTLzCk43nV9lChoBmgJaA9DCHsUrkeh/HJAlIaUUpRoFU1iAmgWR0CVd6AjIJZ4dX2UKGgGaAloD0MIWK63zdTpY0CUhpRSlGgVTegDaBZHQJV4hQoCuEF1fZQoaAZoCWgPQwj/JalMsU9mQJSGlFKUaBVN6ANoFkdAlXkIrjHXE3V9lChoBmgJaA9DCAvsMZHSgWJAlIaUUpRoFU3oA2gWR0CVeqRgqmTDdX2UKGgGaAloD0MIrg0V4/zPZECUhpRSlGgVTegDaBZHQJV8vOObRWt1fZQoaAZoCWgPQwgfaXBb261vQJSGlFKUaBVNWQNoFkdAlYBbmZE2HnV9lChoBmgJaA9DCKvpeqJrZGRAlIaUUpRoFU3oA2gWR0CVowcYIjW1dX2UKGgGaAloD0MIKhkAqnhpcUCUhpRSlGgVTVEBaBZHQJWlRwvQF9t1fZQoaAZoCWgPQwgmOPWBZPdjQJSGlFKUaBVN6ANoFkdAlafbiqABk3V9lChoBmgJaA9DCHbEIRvITGdAlIaUUpRoFU3oA2gWR0CVq7yIpH7QdX2UKGgGaAloD0MISBYwgdtFcUCUhpRSlGgVTawCaBZHQJWr0F7laKV1fZQoaAZoCWgPQwgsu2BwTUBwQJSGlFKUaBVNiwFoFkdAla5fzreImHV9lChoBmgJaA9DCJMCC2BKlWdAlIaUUpRoFU3oA2gWR0CVscnWattAdX2UKGgGaAloD0MIyJdQweFkZUCUhpRSlGgVTegDaBZHQJWzZ2Qnx8V1fZQoaAZoCWgPQwgt6L0xRLFwQJSGlFKUaBVNkgJoFkdAlbRn752yLXV9lChoBmgJaA9DCAt9sIxNMHBAlIaUUpRoFU3MAWgWR0CVtbQ4jrzHdX2UKGgGaAloD0MI64zvi0sxPkCUhpRSlGgVTRcBaBZHQJW7TKV6eGx1fZQoaAZoCWgPQwh9WG/UijxmQJSGlFKUaBVN6ANoFkdAlbx7+DOC5HV9lChoBmgJaA9DCIs3Mo/8O2BAlIaUUpRoFU3oA2gWR0CVv62nsLOSdX2UKGgGaAloD0MId4GSAks+cUCUhpRSlGgVTZYDaBZHQJXEh+z+m3x1fZQoaAZoCWgPQwh/h6JAX25xQJSGlFKUaBVNlQNoFkdAlcidAC4jKXV9lChoBmgJaA9DCNyg9lt78HBAlIaUUpRoFU3DAWgWR0CVyRW07bL2dX2UKGgGaAloD0MIoidlUsMFcUCUhpRSlGgVTbgDaBZHQJXLXwI+nqF1fZQoaAZoCWgPQwhUUiegiSxnQJSGlFKUaBVN6ANoFkdAldB8baRISXV9lChoBmgJaA9DCCkmb4AZq25AlIaUUpRoFU2aAWgWR0CV1yV09yLidX2UKGgGaAloD0MI9DehEIExbUCUhpRSlGgVTdkBaBZHQJXfBN47ihp1fZQoaAZoCWgPQwgEjgQa7J5jQJSGlFKUaBVN6ANoFkdAleFSZSeiBXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48378a623ac77bbc49e2eb9124f57fae7da452fa7063b36325c2b52c6ad2f86b
|
3 |
+
size 144050
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f87874e5680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f87874e5710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f87874e57a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f87874e5830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f87874e58c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f87874e5950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f87874e59e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f87874e5a70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f87874e5b00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f87874e5b90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f87874e5c20>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8787539270>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651830617.4921982,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADOLz17qrC6nvIOuFcHFrNPIxY6JD0jNwAAgD8AAIA/Grl0PVJQ57lUixe46SM9s3mxrTrNljU3AACAPwAAgD9A5iQ+M2ymP1UWKD+bArC+gtAdPlFdjD4AAAAAAAAAAKaOrT2uZY26eYGfOenRkTaPLTw6BEm6uAAAgD8AAIA/za2TPK6fnroGvaA6kN1KNbLV87q3mTg0AACAPwAAgD8A07W8H0XuuQBO1bpe9ak0MH4Ku8Po+jkAAIA/AACAP+beGD17Qqm6rmBruevSwLUQsWY6/EeHOAAAgD8AAIA/M9nUPI/eYbo96U05ANTLM1D2gzoGUW+4AACAPwAAgD9afF4+vXorPFNOejkWlX43hE7CPTlrkrgAAIA/AACAP5riijzhkJO6bICtusunqbVVToc6TvHIOQAAgD8AAIA/TcFPvVy6WD5SDR8+/lJwvgB4eTyS4KE7AAAAAAAAAADWKq0+P79gP8ZPrj7EMqy+axlbPiDEzrwAAAAAAAAAAM26U724lrW5jbFWuiMvBLZcd0I7wvh8OQAAgD8AAIA/GtW3PZwCMLxWadi91Ws3vZUAGT0btkQ+AACAPwAAgD9m64Q94eiAupbwQLmNvDM2HkLkuV1XWjgAAIA/AACAPxpScj0pZBm61gzrur6JubUp4gi7+ZELOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9wFIbWJrYUCUhpRSlIwBbJRN6AOMAXSUR0CUBPEit7rtdX2UKGgGaAloD0MINxjqsMKdYkCUhpRSlGgVTegDaBZHQJQFzAZbY9R1fZQoaAZoCWgPQwhEatrFNElgQJSGlFKUaBVN6ANoFkdAlAZ1tKqXGHV9lChoBmgJaA9DCLXhsDRwUGNAlIaUUpRoFU3oA2gWR0CUCQz/IbOvdX2UKGgGaAloD0MIyHn/HycOZ0CUhpRSlGgVTegDaBZHQJQKLIyTINp1fZQoaAZoCWgPQwjMe5xpQqJiQJSGlFKUaBVN6ANoFkdAlC9RI8QqZ3V9lChoBmgJaA9DCGrC9pOx82JAlIaUUpRoFU3oA2gWR0CUL64S6DoRdX2UKGgGaAloD0MI/kemQyfsYECUhpRSlGgVTegDaBZHQJQ2FN5+pfh1fZQoaAZoCWgPQwiD3EWYot9gQJSGlFKUaBVN6ANoFkdAlDc4JZ4fOnV9lChoBmgJaA9DCL048dUOjmFAlIaUUpRoFU3oA2gWR0CUPo1gH/tIdX2UKGgGaAloD0MISaDBpk5VYECUhpRSlGgVTegDaBZHQJRFCX/o7mx1fZQoaAZoCWgPQwhIh4cwfsRdQJSGlFKUaBVN6ANoFkdAlEcnObAk9nV9lChoBmgJaA9DCCm0rPvH42BAlIaUUpRoFU3oA2gWR0CUTO7vG6wudX2UKGgGaAloD0MISdqNPqabckCUhpRSlGgVTcMCaBZHQJRRxgPVd5Z1fZQoaAZoCWgPQwixijcyD65hQJSGlFKUaBVN6ANoFkdAlF98pgCwKXV9lChoBmgJaA9DCAaFQZnGGmZAlIaUUpRoFU3oA2gWR0CUYIR02cawdX2UKGgGaAloD0MIHO+OjFUuZ0CUhpRSlGgVTegDaBZHQJRl/V9Wp611fZQoaAZoCWgPQwj4qL9eYVteQJSGlFKUaBVN6ANoFkdAlGZHFLnLaHV9lChoBmgJaA9DCAD/lCpR7V9AlIaUUpRoFU3oA2gWR0CUZ7rdFfAsdX2UKGgGaAloD0MI4QhSKXYyYECUhpRSlGgVTegDaBZHQJRqSwRoRI11fZQoaAZoCWgPQwig+Zy73bpkQJSGlFKUaBVN6ANoFkdAlGtvlEJBxHV9lChoBmgJaA9DCKZ7ndSXgTZAlIaUUpRoFUv6aBZHQJRw3BJqZc91fZQoaAZoCWgPQwghkiHH1nJgQJSGlFKUaBVN6ANoFkdAlI+33cpLEnV9lChoBmgJaA9DCIqtoGkJamRAlIaUUpRoFU3oA2gWR0CUkAfIS13MdX2UKGgGaAloD0MIukp319mrZECUhpRSlGgVTegDaBZHQJSVy0zCUHJ1fZQoaAZoCWgPQwgqdF5jlylnQJSGlFKUaBVN6ANoFkdAlJbm7nPmgnV9lChoBmgJaA9DCLzP8dFi52ZAlIaUUpRoFU3oA2gWR0CUnfd+G47SdX2UKGgGaAloD0MI39416EsZQECUhpRSlGgVTQgBaBZHQJShhlvqC6J1fZQoaAZoCWgPQwhOY3staN5vQJSGlFKUaBVNtAFoFkdAlKIYOUdJa3V9lChoBmgJaA9DCDSitDd4g2NAlIaUUpRoFU3oA2gWR0CUpAqp97WvdX2UKGgGaAloD0MIJsgIqHABYUCUhpRSlGgVTegDaBZHQJSl6u0TlDF1fZQoaAZoCWgPQwghyhe0kENjQJSGlFKUaBVN6ANoFkdAlKpzGDL8rXV9lChoBmgJaA9DCKFl3T8WAmNAlIaUUpRoFU3oA2gWR0CUrwTj/+85dX2UKGgGaAloD0MIUS/4NCegbkCUhpRSlGgVTX8BaBZHQJSwDw9aEBd1fZQoaAZoCWgPQwjP91PjpUxgQJSGlFKUaBVN6ANoFkdAlLxbNKRMe3V9lChoBmgJaA9DCL3EWKbfVm1AlIaUUpRoFU2cAWgWR0CUvXDr7fpEdX2UKGgGaAloD0MItvXTf9ZvZUCUhpRSlGgVTegDaBZHQJTC7hn8Koh1fZQoaAZoCWgPQwgbhSSzelNnQJSGlFKUaBVN6ANoFkdAlMM/aL4ve3V9lChoBmgJaA9DCCqr6XoiVWFAlIaUUpRoFU3oA2gWR0CUxLKNyYG/dX2UKGgGaAloD0MIPfIHA8+7Y0CUhpRSlGgVTegDaBZHQJTHTp3X7Lt1fZQoaAZoCWgPQwjYuWkzzhZmQJSGlFKUaBVN6ANoFkdAlM7Q/PgNw3V9lChoBmgJaA9DCJ0PzxLkkWdAlIaUUpRoFU3oA2gWR0CU7otyPuG9dX2UKGgGaAloD0MIJv+Tv/t5Z0CUhpRSlGgVTegDaBZHQJT1QcWCVbB1fZQoaAZoCWgPQwiSk4lbxS1xQJSGlFKUaBVNxAJoFkdAlPbjk6tDD3V9lChoBmgJaA9DCNDVVuwvu+4/lIaUUpRoFUv+aBZHQJT7nG6wt8N1fZQoaAZoCWgPQwh8DFacatRiQJSGlFKUaBVN6ANoFkdAlP4LUgB91HV9lChoBmgJaA9DCKiN6nSgr2VAlIaUUpRoFU3oA2gWR0CVAd8GLUCrdX2UKGgGaAloD0MItYzUeyocZkCUhpRSlGgVTegDaBZHQJUD0Kneizt1fZQoaAZoCWgPQwilEp7Qa0dlQJSGlFKUaBVN6ANoFkdAlQW+glF+eHV9lChoBmgJaA9DCKfoSC5/GGRAlIaUUpRoFU3oA2gWR0CVDvGgi/widX2UKGgGaAloD0MI3c8pyM/gZUCUhpRSlGgVTegDaBZHQJUP6mLtNSJ1fZQoaAZoCWgPQwjc9j3qr1VhQJSGlFKUaBVN6ANoFkdAlRulWCEpRXV9lChoBmgJaA9DCLlRZK2h5GVAlIaUUpRoFU3oA2gWR0CVHJ/sVtXQdX2UKGgGaAloD0MIDvW7sHV0cECUhpRSlGgVTZYBaBZHQJUg4Glhw2l1fZQoaAZoCWgPQwjtnjwsVFRvQJSGlFKUaBVN8QJoFkdAlSGChew9q3V9lChoBmgJaA9DCAeaz7nb9GFAlIaUUpRoFU3oA2gWR0CVIcI5YHPedX2UKGgGaAloD0MITFKZYg5FY0CUhpRSlGgVTegDaBZHQJUiAt+TeO51fZQoaAZoCWgPQwi/Y3jsZ1ZjQJSGlFKUaBVN6ANoFkdAlSM4Mz/IbXV9lChoBmgJaA9DCJl+iXjrWmFAlIaUUpRoFU3oA2gWR0CVJWYraufVdX2UKGgGaAloD0MIIR6Jl+fxcECUhpRSlGgVTX8DaBZHQJUvU7Njbzt1fZQoaAZoCWgPQwiB6EmZ1P5UQJSGlFKUaBVNDQFoFkdAlUzQmVqveXV9lChoBmgJaA9DCA6Fz9ZBLHFAlIaUUpRoFU0pAmgWR0CVTQbR4QjEdX2UKGgGaAloD0MIh4px/iafbUCUhpRSlGgVTV4BaBZHQJVR4qiGnGd1fZQoaAZoCWgPQwhH5/wUxy5jQJSGlFKUaBVN6ANoFkdAlVKoxgy/K3V9lChoBmgJaA9DCK3boPZb1m5AlIaUUpRoFU3aA2gWR0CVVgc4HX2/dX2UKGgGaAloD0MIkh/xK9bpXkCUhpRSlGgVTegDaBZHQJVY3V6NVBF1fZQoaAZoCWgPQwiWkuUklOJfQJSGlFKUaBVN6ANoFkdAlVxfCQ9zO3V9lChoBmgJaA9DCDf92Y8Uf2JAlIaUUpRoFU3oA2gWR0CVXhgTAWSEdX2UKGgGaAloD0MIDcUdb/Llb0CUhpRSlGgVTd8BaBZHQJVoD6P8yet1fZQoaAZoCWgPQwh+dOrK50NxQJSGlFKUaBVN4QNoFkdAlWkwsXizcHV9lChoBmgJaA9DCHIW9rRDiG5AlIaUUpRoFU0wAWgWR0CVa0XrMTvidX2UKGgGaAloD0MIsOjWa/oHY0CUhpRSlGgVTegDaBZHQJVz97XxvvV1fZQoaAZoCWgPQwh9XvHUo05kQJSGlFKUaBVN6ANoFkdAlXTLzCk43nV9lChoBmgJaA9DCHsUrkeh/HJAlIaUUpRoFU1iAmgWR0CVd6AjIJZ4dX2UKGgGaAloD0MIWK63zdTpY0CUhpRSlGgVTegDaBZHQJV4hQoCuEF1fZQoaAZoCWgPQwj/JalMsU9mQJSGlFKUaBVN6ANoFkdAlXkIrjHXE3V9lChoBmgJaA9DCAvsMZHSgWJAlIaUUpRoFU3oA2gWR0CVeqRgqmTDdX2UKGgGaAloD0MIrg0V4/zPZECUhpRSlGgVTegDaBZHQJV8vOObRWt1fZQoaAZoCWgPQwgfaXBb261vQJSGlFKUaBVNWQNoFkdAlYBbmZE2HnV9lChoBmgJaA9DCKvpeqJrZGRAlIaUUpRoFU3oA2gWR0CVowcYIjW1dX2UKGgGaAloD0MIKhkAqnhpcUCUhpRSlGgVTVEBaBZHQJWlRwvQF9t1fZQoaAZoCWgPQwgmOPWBZPdjQJSGlFKUaBVN6ANoFkdAlafbiqABk3V9lChoBmgJaA9DCHbEIRvITGdAlIaUUpRoFU3oA2gWR0CVq7yIpH7QdX2UKGgGaAloD0MISBYwgdtFcUCUhpRSlGgVTawCaBZHQJWr0F7laKV1fZQoaAZoCWgPQwgsu2BwTUBwQJSGlFKUaBVNiwFoFkdAla5fzreImHV9lChoBmgJaA9DCJMCC2BKlWdAlIaUUpRoFU3oA2gWR0CVscnWattAdX2UKGgGaAloD0MIyJdQweFkZUCUhpRSlGgVTegDaBZHQJWzZ2Qnx8V1fZQoaAZoCWgPQwgt6L0xRLFwQJSGlFKUaBVNkgJoFkdAlbRn752yLXV9lChoBmgJaA9DCAt9sIxNMHBAlIaUUpRoFU3MAWgWR0CVtbQ4jrzHdX2UKGgGaAloD0MI64zvi0sxPkCUhpRSlGgVTRcBaBZHQJW7TKV6eGx1fZQoaAZoCWgPQwh9WG/UijxmQJSGlFKUaBVN6ANoFkdAlbx7+DOC5HV9lChoBmgJaA9DCIs3Mo/8O2BAlIaUUpRoFU3oA2gWR0CVv62nsLOSdX2UKGgGaAloD0MId4GSAks+cUCUhpRSlGgVTZYDaBZHQJXEh+z+m3x1fZQoaAZoCWgPQwh/h6JAX25xQJSGlFKUaBVNlQNoFkdAlcidAC4jKXV9lChoBmgJaA9DCNyg9lt78HBAlIaUUpRoFU3DAWgWR0CVyRW07bL2dX2UKGgGaAloD0MIoidlUsMFcUCUhpRSlGgVTbgDaBZHQJXLXwI+nqF1fZQoaAZoCWgPQwhUUiegiSxnQJSGlFKUaBVN6ANoFkdAldB8baRISXV9lChoBmgJaA9DCCkmb4AZq25AlIaUUpRoFU2aAWgWR0CV1yV09yLidX2UKGgGaAloD0MI9DehEIExbUCUhpRSlGgVTdkBaBZHQJXfBN47ihp1fZQoaAZoCWgPQwgEjgQa7J5jQJSGlFKUaBVN6ANoFkdAleFSZSeiBXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c00adf8b6fe1e6236c2dacc73d76e61e635c95bb0db23d3e828574965f9b7f4d
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4284a28cf876051d3a8e1e940882657e1a28ea48d9ef96fb4d6104004e379b66
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a1cf7e8db0762ffdd86e0be21d37a571eba0028958a4ebcfd5ce6fd0e6e3f07
|
3 |
+
size 218597
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.3497950099207, "std_reward": 17.847971039524694, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T10:45:08.743999"}
|