--- language: - en license: apache-2.0 tags: - LLMs - mistral - math - Intel - llama-cpp - gguf-my-repo base_model: Intel/neural-chat-7b-v3-2 datasets: - meta-math/MetaMathQA model-index: - name: neural-chat-7b-v3-2 results: - task: type: Large Language Model name: Large Language Model dataset: name: meta-math/MetaMathQA type: meta-math/MetaMathQA metrics: - type: ARC (25-shot) value: 67.49 name: ARC (25-shot) verified: true - type: HellaSwag (10-shot) value: 83.92 name: HellaSwag (10-shot) verified: true - type: MMLU (5-shot) value: 63.55 name: MMLU (5-shot) verified: true - type: TruthfulQA (0-shot) value: 59.68 name: TruthfulQA (0-shot) verified: true - type: Winogrande (5-shot) value: 79.95 name: Winogrande (5-shot) verified: true - type: GSM8K (5-shot) value: 55.12 name: GSM8K (5-shot) verified: true --- # DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF This model was converted to GGUF format from [`Intel/neural-chat-7b-v3-2`](https://huggingface.co/Intel/neural-chat-7b-v3-2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Intel/neural-chat-7b-v3-2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF --hf-file neural-chat-7b-v3-2-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF --hf-file neural-chat-7b-v3-2-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF --hf-file neural-chat-7b-v3-2-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo DarkJanissary/neural-chat-7b-v3-2-Q6_K-GGUF --hf-file neural-chat-7b-v3-2-q6_k.gguf -c 2048 ```