File size: 4,276 Bytes
7f91a6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- semantic-search
- chinese
---

# DMetaSoul/sbert-chinese-general-v2-distill

此模型是之前[开源通用语义匹配模型](https://huggingface.co/DMetaSoul/sbert-chinese-general-v2)的蒸馏版本(仅4层 BERT),适用于**通用语义匹配**场景,从效果来看该模型在各种任务上**泛化能力更好且编码速度更快**。

离线训练好的大模型如果直接用于线上推理,对计算资源有苛刻的需求,而且难以满足业务环境对延迟、吞吐量等性能指标的要求,这里我们使用蒸馏手段来把大模型轻量化。从 12 层 BERT 蒸馏为 4 层后,模型参数量缩小到 44%,大概 latency 减半、throughput 翻倍、精度下降 6% 左右(具体结果详见下文评估小节)。

# Usage

## 1. Sentence-Transformers

通过  [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装:

```
pip install -U sentence-transformers
```

然后使用下面的代码来载入该模型并进行文本表征向量的提取:

```python
from sentence_transformers import SentenceTransformer
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"]

model = SentenceTransformer('DMetaSoul/sbert-chinese-general-v2-distill')
embeddings = model.encode(sentences)
print(embeddings)
```

## 2. HuggingFace Transformers

如果不想使用   [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取:

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-general-v2-distill')
model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-general-v2-distill')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```

## Evaluation

这里主要跟蒸馏前对应的 teacher 模型作了对比:

*性能:*

|            | Teacher               | Student             | Gap   |
| ---------- | --------------------- | ------------------- | ----- |
| Model      | BERT-12-layers (102M) | BERT-4-layers (45M) | 0.44x |
| Cost       | 23s                   | 12s                 | -47%  |
| Latency    | 38ms                  | 20ms                | -47%  |
| Throughput | 418 sentence/s        | 791 sentence/s      | 1.9x  |

*精度:*

|                | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | **Avg** |
| -------------- | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- | ------- |
| **Teacher**    | 77.19%       | 72.59%        | 36.79%    | 76.91%    | 49.62%       | 16.24%    | 63.15%     | 56.07%  |
| **Student**    | 76.49%       | 73.33%        | 26.46%    | 64.26%    | 46.02%       | 11.83%    | 52.45%     | 50.12%  |
| **Gap** (abs.) | -            | -             | -         | -         | -            | -         | -          | -5.95%  |

*基于1万条数据测试,GPU设备是V100,batch_size=16,max_seq_len=256*


## Citing & Authors

E-mail: [email protected]