--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.82 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6191 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1554 | 1.0 | 113 | 2.0427 | 0.44 | | 1.5528 | 2.0 | 226 | 1.5599 | 0.5 | | 1.3212 | 3.0 | 339 | 1.1755 | 0.6 | | 0.9075 | 4.0 | 452 | 0.9560 | 0.73 | | 0.7823 | 5.0 | 565 | 0.8967 | 0.74 | | 0.7262 | 6.0 | 678 | 0.6578 | 0.8 | | 0.5761 | 7.0 | 791 | 0.6274 | 0.81 | | 0.3797 | 8.0 | 904 | 0.6923 | 0.82 | | 0.4168 | 9.0 | 1017 | 0.5700 | 0.84 | | 0.2646 | 10.0 | 1130 | 0.6484 | 0.81 | | 0.1952 | 11.0 | 1243 | 0.5925 | 0.84 | | 0.1403 | 12.0 | 1356 | 0.6551 | 0.82 | | 0.1558 | 13.0 | 1469 | 0.6271 | 0.82 | | 0.4606 | 14.0 | 1582 | 0.6272 | 0.82 | | 0.2095 | 15.0 | 1695 | 0.6191 | 0.82 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1