--- license: cc-by-nc-sa-4.0 language: - ko tags: - medical datasets: - sean0042/KorMedMCQA - ChuGyouk/AI_healthcare_QA_samples_Sonnet3.5 - ChuGyouk/HFH4_ultrachat_200k_ko --- # ๐Ÿฅ Ko-Med-Gemma-2-9b-it ![image](./Korean-Medical-Gemma2.png) โš ๏ธ **The output of this model should not be considered as professional medical advice, diagnosis, or treatment. For accurate diagnosis and treatment of any specific medical issue, please consult a qualified physician or healthcare professional. Also, the commercial usage of this model is prohibited.** ## ๐Ÿš€ Training We did continued fine-tuning using [rtzr/ko-gemma-2-9b-it](https://huggingface.co/rtzr/ko-gemma-2-9b-it) as a base model. We trained 1.5 epoch on our dataset and the training time was about 65 hours. 1 A100-80G NVIDIA GPU is used. ## ๐ŸŽ Dataset ~~The dataset in the tag is not all of our training data~~ Our dataset consists of 449,500 data in total, including English/Korean medical data and English/Korean general domain data. It includes both single-turn and multi-turn, and includes doctor-patient conversations as well as medical exam QA with reasoning. Korean medical data includes some that are translated from English medical data, while others are not. ## ๐Ÿ† Evaluation ### [KorMedMCQA](https://arxiv.org/abs/2403.01469) [[KorMedMCQA (ํ•œ๊ตญ์–ด ์˜ํ•™ ๋ฒค์น˜๋งˆํฌ) Dataset]](https://huggingface.co/datasets/sean0042/KorMedMCQA) We have uploaded the full results (including the exact outputs) in Google Drive [[here](https://drive.google.com/drive/folders/1EaZv9SQKJ1Zaw97ijg0j1UqZJY-N2OX1?usp=sharing)]. #### Method We followed the lm-eval direct generation method proposed in the original paper, but modified a little bit. See my modified lm-evaluation-harness repo [[here](https://github.com/GyoukChu/lm-evaluation-harness/tree/main/lm_eval/tasks/kormedmcqa)]. 1. Since there are many (relatively) easy problems in the nurse category so that the final average score tends to be high, **weight_by_size was set to false** during mean aggregation. 2. Change the few-shot split from 'dev' to 'fewshot' 3. Add 'dentist' category. 4. Add multiple 'eos' tokens for generation_kwargs. (Since various recent models use different eos tokens.) #### Note - Due to the batch inference issue of gemma-2 models [here](https://huggingface.co/google/gemma-2-9b-it/discussions/43), we used **batch_size=1**. (Also, The batch size is automatically 1 for closed-sourced models through API. (except openAI batch API)) We hope that there is no big difference from the case where batch_size=8. - Other settings: num_fewshot=5, seed=42, 1 A100-80G NVIDIA GPU. - (WANT) TODO: Do for other random seeds twice more and calculate average as the final score. #### Results (5-shots, Direct Generation) | Model | Doctor | Dentist | Nurse | Pharm | Avg | |------------------------------------------------|-------|-------|-------|-------|-------| | **Closed Source** | | | | | | | gpt-4o-2024-08-06 โ€  | 85.75 | 78.91 | 91.00 | 85.65 | 85.33 | | gpt-4o-2024-05-13 โ€  | 85.98 | 60.67 โ€ก | 84.97 | 84.18 | 78.95 | | gpt-4o-mini-2024-07-18 โ€  | 66.20 | 61.16 | 79.50 | 69.94 | 69.20 | | HyperCLOVA X HCX-003 ยง | 49.89 | 50.31 | 72.55 | 62.26 | 58.75 | | HyperCLOVA X HCX-DASH-001 ยง | 43.22 | 42.42 | 60.02 | 47.80 | 48.36 | | solar-1-mini-chat-240612 ยง | 43.45 | 39.21 | 57.52 | 46.33 | 46.63 | | **Gemma-2 9B Family** | | | | | | | **ChuGyouk/ko-med-gemma-2-9b-it-merge2 (Ours, Merged)** | 57.47 | **56.60** | **76.42** | 68.36 | **64.71** | | **ChuGyouk/ko-med-gemma-2-9b-it-merge1 (Ours, merged)** | **57.93** | 55.86 | 75.06 | **68.93** | 64.44 | | **ChuGyouk/ko-med-gemma-2-9b-it-base (Ours, Base)** | 57.47 | 55.24 | 76.08 | 68.81 | 64.40 | | rtzr/ko-gemma-2-9b-it | 54.02 | 53.14 | 73.46 | 64.63 | 61.32 | | google/gemma-2-9b-it | 52.41 | 52.90 | 73.58 | 64.29 | 60.80 | | **Korean Models** | | | | | | | LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct | 47.13 | 46.98 | 69.36 | 56.27 | 54.93 | | yanolja/EEVE-Korean-Instruct-10.8B-v1.0 | 44.37 | 41.18 | 66.63 | 57.29 | 52.37 | | upstage/SOLAR-10.7B-Instruct-v1.0 | 40.23 | 36.13 | 55.58 | 52.88 | 46.21 | | **Multilingual Models** | | | | | | | Qwen/Qwen2-7B-Instruct | 44.60 | 45.75 | 65.95 | 57.74 | 53.51 | | meta-llama/Meta-Llama-3.1-8B-Instruct | 39.77 | 41.68 | 59.34 | 56.61 | 49.35 | | **>10B Models** | | | | | | | google/gemma-2-27b-it (27.2B) | 58.85 | 56.47 | 79.27 | 71.86 | 66.61 | | CohereForAI/c4ai-command-r-08-2024 (32.3B) | 63.91 | 53.14 | 75.28 | 69.38 | 65.43 | | mistralai/Mistral-Nemo-Instruct-2407 (12.2B) | 42.53 | 44.51 | 66.17 | 56.38 | 52.40 | โ€  : For the answers of GPT, we received a lot of responses in the form of "์ •๋‹ต: A", "์ •๋‹ต์€ B", "์ •๋‹ต์€ C ์ž…๋‹ˆ๋‹ค". We manually changed these answers to simply A, B, and C, and then re-measured the score. โ€ก : For the dentist results of gpt-4o-2024-05-13, responses like "์ •๋‹ต์„ ์ œ๊ณตํ•ด๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค:" are observed quite frequently, so the actual score is expected to be slightly higher. ## ๐Ÿ“š Example ### Python Code ```python import os import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "ChuGyouk/ko-med-gemma-2-9b-it-merge2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) model.eval() # KorMedMCQA Doctor Test 2022 2nd period Question 61, Answer is B, ์„ธ๊ท ์ˆ˜๋ง‰์—ผ input_prompt = "๋‹ค์Œ ์˜ํ•™ ์‹œํ—˜ ๋ฌธ์ œ์— ๋Œ€ํ•ด ๋ณด๊ธฐ A~E ์ค‘ ์ •๋‹ต์„ ์„ ํƒํ•˜์„ธ์š”. ์„ ํƒ ์ด์œ ๋ฅผ ๊ตฌ์ฒด์ ์œผ๋กœ ์ œ๊ณตํ•˜์„ธ์š”." question = "6์„ธ ์—ฌ์•„๊ฐ€ ํ•˜๋ฃจ ์ „๋ถ€ํ„ฐ ๋จธ๋ฆฌ๊ฐ€ ์•„ํ”„๊ณ  ๊ตฌํ† ๋ฅผ ํ•˜์—ฌ ๋ณ‘์›์— ์™”๋‹ค. ํ˜ˆ์•• 100/60 mmHg, ๋งฅ๋ฐ• 110ํšŒ/๋ถ„, ํ˜ธํก 25ํšŒ/๋ถ„, ์ฒด์˜จ 38.7โ„ƒ์ด๋‹ค. ์กธ๋ คํ•˜๊ณ , ๋ชฉ๊ฒฝ์ง๊ณผ ์ปค๋‹ˆ๊ทธ(Kernig) ์ง•ํ›„๋Š” ์–‘์„ฑ์ด์ง€๋งŒ, ๋‡Œ์‹ ๊ฒฝ๋งˆ๋น„๋‚˜ ๋ถ€๋ถ„์‹ ๊ฒฝ ์ง•ํ›„๋Š” ์—†๋‹ค. ๊ฒ€์‚ฌ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ง„๋‹จ์€?\nํ˜ˆ์•ก: ํ˜ˆ์ƒ‰์†Œ 13.8g/dL, ๋ฐฑํ˜ˆ๊ตฌ 14,200/mm^3, ํ˜ˆ์†ŒํŒ 135,000/mm^3 ์ด๋‹จ๋ฐฑ์งˆ 7.4 g/dL, ์•Œ๋ถ€๋ฏผ 4.3 g/dL, ํฌ๋„๋‹น 105 mg/dL, C-๋ฐ˜์‘๋‹จ๋ฐฑ์งˆ 120 mg/L (์ฐธ๊ณ ์น˜, <10) ํ”„๋กœ์นผ์‹œํ† ๋‹Œ 90 ng/mL (์ฐธ๊ณ ์น˜, 0.00-0.49) ๊ฒฐํ•ตํŠน์ด ์ธํ„ฐํŽ˜๋ก ๊ฐ๋งˆ(interferon-ฮณ) ๋ฐฉ์ถœ์ธก์ • ์Œ์„ฑ์†Œ๋ณ€: ์ ํ˜ˆ๊ตฌ 5๏ฝž10/๊ณ ๋ฐฐ์œจ์‹œ์•ผ, ๋ฐฑํ˜ˆ๊ตฌ 20๏ฝž30/๊ณ ๋ฐฐ์œจ์‹œ์•ผ, ๋‡Œ์ฒ™์ˆ˜์•ก: ์••๋ ฅ 240 mmH2O, ๋ฐฑํ˜ˆ๊ตฌ 650/mm^3 (๋‹คํ˜•ํ•ต๋ฐฑํ˜ˆ๊ตฌ 90%, ๋ฆผํ”„๊ตฌ 10%), ๋‹จ๋ฐฑ์งˆ 112 mg/dL, ํฌ๋„๋‹น 35 mg/dL, ์˜ฌ๋ฆฌ๊ณ ํด๋ก ๋  ์Œ์„ฑ ์•„๋ฐ๋…ธ์‹ ํƒˆ์•„๋ฏธ๋…ธํšจ์†Œํ™œ์„ฑ๋„(ADA) 4.1 U/L (์ฐธ๊ณ ์น˜, <10)" A = "๊ฒฐํ•ต์ˆ˜๋ง‰์—ผ" B = "์„ธ๊ท ์ˆ˜๋ง‰์—ผ" C = "์ž๊ฐ€๋ฉด์—ญ๋‡Œ์—ผ" D = "๋ฐ”์ด๋Ÿฌ์Šค์ˆ˜๋ง‰์—ผ" E = "๊ธ‰์„ฑํŒŒ์ข…๋‡Œ์ฒ™์ˆ˜์—ผ" instruction = f"{input_prompt}\n\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nE. {E}" messages = [ { "role": "user", "content": instruction } ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("") ] outputs = model.generate( input_ids, max_new_tokens=2048, eos_token_id=terminators, do_sample=True, temperature=0.7, top_p=1.0, ) print(tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)) ``` ### Output ```markdown ์ •๋‹ต์€ B์ž…๋‹ˆ๋‹ค. ์„ธ๊ท ์ˆ˜๋ง‰์—ผ. ๋‹ค์Œ์€ ๊ฐ ์„ ํƒ์ง€์— ๋Œ€ํ•œ ์„ค๋ช…์ž…๋‹ˆ๋‹ค: A. ๊ฒฐํ•ต์ˆ˜๋ง‰์—ผ: ๊ฒฐํ•ตํŠน์ด ์ธํ„ฐํŽ˜๋ก -๊ฐ๋งˆ ๋ฐฉ์ถœ์ธก์ •์ด ์Œ์„ฑ์ด๋ฏ€๋กœ ๊ฒฐํ•ต์ˆ˜๋ง‰์—ผ์€ ๊ฐ€๋Šฅ์„ฑ์ด ๋‚ฎ์Šต๋‹ˆ๋‹ค. B. ์„ธ๊ท ์ˆ˜๋ง‰์—ผ: ํ™˜์ž๋Š” ๊ณ ์—ด, ๊ตฌํ† , ๋‘ํ†ต, ๋ชฉ๊ฒฝ์ง, ์ปค๋‹ˆ๊ทธ ์ง•ํ›„ ์–‘์„ฑ ๋“ฑ ์„ธ๊ท ์ˆ˜๋ง‰์—ผ์˜ ์ „ํ˜•์ ์ธ ์ฆ์ƒ์„ ๋ณด์ž…๋‹ˆ๋‹ค. ํ˜ˆ์•ก ๊ฒ€์‚ฌ์—์„œ ๋ฐฑํ˜ˆ๊ตฌ ์ฆ๊ฐ€๊ฐ€ ๋‚˜ํƒ€๋‚˜๋ฉฐ, ๋‡Œ์ฒ™์ˆ˜์•ก ๊ฒ€์‚ฌ์—์„œ ๋ฐฑํ˜ˆ๊ตฌ ์ˆ˜๊ฐ€ ๋†’๊ณ (650/mm3), ๋‹คํ˜•ํ•ต๋ฐฑํ˜ˆ๊ตฌ๊ฐ€ ์ฐจ์ง€ํ•˜๋Š” ๋น„์œจ์ด ๋†’์œผ๋ฉฐ(90%), ํฌ๋„๋‹น ์ˆ˜์น˜๊ฐ€ ๋‚ฎ๊ณ (35 mg/dL), ๋‹จ๋ฐฑ์งˆ ์ˆ˜์น˜๊ฐ€ ๋†’์Šต๋‹ˆ๋‹ค(112 mg/dL). ์ด๋Ÿฌํ•œ ์†Œ๊ฒฌ์€ ์„ธ๊ท ์„ฑ ์—ผ์ฆ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. C. ์ž๊ฐ€๋ฉด์—ญ๋‡Œ์—ผ: ์ž๊ฐ€๋ฉด์—ญ๋‡Œ์—ผ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋‡Œ์‹ ๊ฒฝ๋งˆ๋น„๋‚˜ ๋ถ€๋ถ„์‹ ๊ฒฝ ์ง•ํ›„๋ฅผ ๋™๋ฐ˜ํ•˜์ง€๋งŒ, ์ด ํ™˜์ž๋Š” ์ด๋Ÿฌํ•œ ์ฆ์ƒ์„ ๋ณด์ด์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋‡Œ์ฒ™์ˆ˜์•ก ๊ฒ€์‚ฌ์—์„œ ADA ํ™œ์„ฑ๋„๊ฐ€ ์ •์ƒ ๋ฒ”์œ„์— ์žˆ์œผ๋ฏ€๋กœ ์ž๊ฐ€๋ฉด์—ญ๋‡Œ์—ผ์€ ๊ฐ€๋Šฅ์„ฑ์ด ๋‚ฎ์Šต๋‹ˆ๋‹ค. D. ๋ฐ”์ด๋Ÿฌ์Šค์ˆ˜๋ง‰์—ผ: ๋ฐ”์ด๋Ÿฌ์Šค์ˆ˜๋ง‰์—ผ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฐฑํ˜ˆ๊ตฌ ์ˆ˜์น˜๊ฐ€ ๋‚ฎ๊ณ (200/mm3 ์ดํ•˜), ๋‹จ๋ฐฑ์งˆ ์ˆ˜์น˜๊ฐ€ ๋‚ฎ์œผ๋ฉฐ, ํฌ๋„๋‹น ์ˆ˜์น˜๋Š” ์ •์ƒ ๋˜๋Š” ์•ฝ๊ฐ„ ๋‚ฎ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ํ™˜์ž๋Š” ์„ธ๊ท ์„ฑ ์—ผ์ฆ์˜ ์ฆ๊ฑฐ๊ฐ€ ์žˆ์œผ๋ฉฐ, ๋ฐ”์ด๋Ÿฌ์Šค ์นจ์Šต์„ ๋‚˜ํƒ€๋‚ด๋Š” ํŠน์ด์ ์ธ ์†Œ๊ฒฌ์ด ์—†์Šต๋‹ˆ๋‹ค. E. ๊ธ‰์„ฑํŒŒ์ข…๋‡Œ์ฒ™์ˆ˜์—ผ: ๊ธ‰์„ฑํŒŒ์ข…๋‡Œ์ฒ™์ˆ˜์—ผ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋‹ค์–‘ํ•œ ์‹ ๊ฒฝํ•™์  ๊ฒฐ์†์„ ๋™๋ฐ˜ํ•˜๋ฉฐ, ๋‡Œ์ฒ™์ˆ˜์•ก์—์„œ ์˜ฌ๋ฆฌ๊ณ ํด๋ก ๋ ๊ฐ€ ๋‚˜ํƒ€๋‚ฉ๋‹ˆ๋‹ค. ์ด ํ™˜์ž๋Š” ๋‡Œ์‹ ๊ฒฝ๋งˆ๋น„๋‚˜ ๋ถ€๋ถ„์‹ ๊ฒฝ ์ง•ํ›„๊ฐ€ ์—†์œผ๋ฉฐ, ์˜ฌ๋ฆฌ๊ณ ํด๋ก ๋ ๋„ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, ํ™˜์ž์˜ ์ž„์ƒ ์ฆ์ƒ๊ณผ ๋‡Œ์ฒ™์ˆ˜์•ก ๊ฒ€์‚ฌ ๊ฒฐ๊ณผ๋Š” ์„ธ๊ท ์„ฑ ์ˆ˜๋ง‰์—ผ์„ ๊ฐ€์žฅ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ์ง„๋‹จ์œผ๋กœ ์ง€์ง€ํ•ฉ๋‹ˆ๋‹ค. ``` ### Other Example ```markdown # "ํƒ€์ด๋ ˆ๋†€์„ ๋จน์—ˆ๋Š”๋ฐ๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋‘ํ†ต์ด ๋„ˆ๋ฌด ์‹ฌํ•ด์š”. ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•˜๋‚˜์š”?" ๋‘ํ†ต์ด ์‹ฌํ•˜์‹œ๋‹ค๋‹ˆ ์•ˆํƒ€๊น์Šต๋‹ˆ๋‹ค. ํƒ€์ด๋ ˆ๋†€์„ ๋ณต์šฉํ–ˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋‘ํ†ต์ด ์ง€์†๋œ๋‹ค๋ฉด, ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฐฉ๋ฒ•์„ ๊ณ ๋ คํ•ด ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค: 1. **์ถฉ๋ถ„ํ•œ ํœด์‹๊ณผ ์ˆ˜๋ถ„ ์„ญ์ทจ**: ๋‘ํ†ต์ด ์‹ฌํ•  ๋•Œ๋Š” ์กฐ์šฉํ•œ ๊ณณ์—์„œ ํœด์‹์„ ์ทจํ•˜๊ณ  ์ถฉ๋ถ„ํ•œ ์ˆ˜๋ถ„์„ ์„ญ์ทจํ•˜๋Š” ๊ฒƒ์ด ๋„์›€์ด ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 2. **๋ƒ‰์ฐœ์งˆ**: ์–ผ์ŒํŒฉ์ด๋‚˜ ์ฐจ๊ฐ€์šด ๋ฌผ๋กœ ์ ์‹  ์ˆ˜๊ฑด์„ ์ด๋งˆ๋‚˜ ๋ชฉ์— ๋Œ€์–ด ๋ƒ‰์ฐœ์งˆ์„ ํ•ด๋ณด์„ธ์š”. 3. **์นดํŽ˜์ธ ์„ญ์ทจ**: ์ ๋‹น๋Ÿ‰์˜ ์นดํŽ˜์ธ์€ ๋‘ํ†ต์„ ์™„ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ปคํ”ผ๋‚˜ ์ฐจ๋ฅผ ์กฐ๊ธˆ ๋งˆ์…”๋ณด์„ธ์š”. 4. **์ŠคํŠธ๋ ˆ์นญ**: ๋ชฉ๊ณผ ์–ด๊นจ๋ฅผ ๋ถ€๋“œ๋Ÿฝ๊ฒŒ ์ŠคํŠธ๋ ˆ์นญํ•˜์—ฌ ๊ธด์žฅ์„ ํ’€์–ด๋ณด์„ธ์š”. 5. **๋‹ค๋ฅธ ์ง„ํ†ต์ œ**: ํƒ€์ด๋ ˆ๋†€ ์™ธ์— ์ด๋ถ€ํ”„๋กœํŽœ์ด๋‚˜ ๋‚˜ํ”„๋ก์„ผ๊ณผ ๊ฐ™์€ ๋‹ค๋ฅธ ์ง„ํ†ต์ œ๋ฅผ ๋ณต์šฉํ•ด ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋ณต์šฉ ์ „์— ๋ฐ˜๋“œ์‹œ ์•ฝ์‚ฌ๋‚˜ ์˜์‚ฌ์™€ ์ƒ๋‹ดํ•˜์„ธ์š”. 6. **์˜์‚ฌ ์ƒ๋‹ด**: ๋‘ํ†ต์ด ์ง€์†๋˜๊ฑฐ๋‚˜ ์‹ฌํ•ด์ง„๋‹ค๋ฉด, ์˜์‚ฌ์™€ ์ƒ๋‹ดํ•˜์—ฌ ์›์ธ์„ ํŒŒ์•…ํ•˜๊ณ  ์ ์ ˆํ•œ ์น˜๋ฃŒ๋ฅผ ๋ฐ›๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๋‘ํ†ต์˜ ์›์ธ์€ ๋‹ค์–‘ํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ์ •ํ™•ํ•œ ์ง„๋‹จ๊ณผ ์น˜๋ฃŒ๋ฅผ ์œ„ํ•ด ์˜๋ฃŒ ์ „๋ฌธ๊ฐ€์˜ ๋„์›€์„ ๋ฐ›๋Š” ๊ฒƒ์ด ๊ฐ€์žฅ ์ข‹์Šต๋‹ˆ๋‹ค. ``` ## MergeKit Details This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ### Merge Details #### Merge Method This model was merged using the DARE TIES merge method using [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) as a base. #### Models Merged The following models were included in the merge: * [rtzr/ko-gemma-2-9b-it](https://huggingface.co/rtzr/ko-gemma-2-9b-it) * [ChuGyouk/ko-med-gemma-2-9b-it-base](https://huggingface.co/ChuGyouk/ko-med-gemma-2-9b-it-base) #### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: google/gemma-2-9b-it # No parameters necessary for base model - model: rtzr/ko-gemma-2-9b-it parameters: density: 0.53 weight: 0.4 - model: ChuGyouk/ko-med-gemma-2-9b-it-base parameters: density: 0.53 weight: 0.6 merge_method: dare_ties base_model: google/gemma-2-9b-it parameters: int8_mask: true dtype: bfloat16 ``` #### Configuration for ChuGyouk/ko-med-gemma-2-9b-it-merge1 Model ```yaml models: - model: rtzr/ko-gemma-2-9b-it - model: ChuGyouk/ko-med-gemma-2-9b-it-base parameters: density: 0.5 weight: 0.5 merge_method: dare_ties base_model: rtzr/ko-gemma-2-9b-it parameters: int8_mask: true dtype: bfloat16 ``` ## Contact ``` kyouwook@kaist.ac.kr magicwho@unist.ac.kr ```