update readme
Browse files
README.md
CHANGED
@@ -1,3 +1,149 @@
|
|
1 |
---
|
2 |
license: openrail++
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: openrail++
|
3 |
+
library_name: diffusers
|
4 |
+
tags:
|
5 |
+
- lora
|
6 |
+
- text-to-image
|
7 |
+
- stable-diffusion
|
8 |
---
|
9 |
+
|
10 |
+
# Hyper-SD
|
11 |
+
Official Repository of the paper: *[Hyper-SD](https://arxiv.org/abs/2310.04378)*.
|
12 |
+
|
13 |
+
Project Page: https://hyper-sd.github.io/
|
14 |
+
|
15 |
+
![](./hypersd_tearser.jpg)
|
16 |
+
|
17 |
+
## Try our Hugging Face demos:
|
18 |
+
AI-Doole demo host on [🤗 space]()
|
19 |
+
|
20 |
+
One-step Text-to-Image demo host on [🤗 T2I]()
|
21 |
+
|
22 |
+
## Introduction
|
23 |
+
|
24 |
+
Hyper-SD is one of the new State-of-the-Art diffusion model acceleration technique.
|
25 |
+
In this repository, we release the models distilled from [SDXL Base 1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and [Stable-Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)。
|
26 |
+
|
27 |
+
## Checkpoints
|
28 |
+
|
29 |
+
* `Hyper-SDXL-Nstep-lora.safetensors`: Lora checkpoint, for SDXL-related models.
|
30 |
+
* `Hyper-SD15-Nstep-lora.safetensors`: Lora checkpoint, for SD1.5-related models.
|
31 |
+
* `Hyper-SDXL-1step-unet.safetensors`: Unet checkpoint distilled from SDXL-Base.
|
32 |
+
|
33 |
+
## SDXL-related models Usage
|
34 |
+
|
35 |
+
### 2-Steps, 4-Steps, 8-steps LoRA
|
36 |
+
```python
|
37 |
+
import torch
|
38 |
+
from diffusers import DiffusionPipeline, DDIMScheduler
|
39 |
+
from huggingface_hub import hf_hub_download
|
40 |
+
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
41 |
+
repo_name = "ByteDance/Hyper-SD"
|
42 |
+
# Take 2-steps lora as an example
|
43 |
+
ckpt_name = "Hyper-SDXL-2steps-lora.safetensors"
|
44 |
+
# Load model.
|
45 |
+
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
46 |
+
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
47 |
+
pipe.fuse_lora()
|
48 |
+
# Ensure ddim scheduler timestep spacing set as trailing
|
49 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
50 |
+
# lower eta results in more detail
|
51 |
+
prompt="a photo of a cat"
|
52 |
+
image=pipe(prompt=prompt, num_inference_steps=2, guidance_scale=0).images[0]
|
53 |
+
```
|
54 |
+
|
55 |
+
### Unified LoRA
|
56 |
+
```python
|
57 |
+
import torch
|
58 |
+
from diffusers import DiffusionPipeline, TCDScheduler
|
59 |
+
from huggingface_hub import hf_hub_download
|
60 |
+
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
61 |
+
repo_name = "ByteDance/Hyper-SD"
|
62 |
+
ckpt_name = "Hyper-SDXL-1step-lora.safetensors"
|
63 |
+
# Load model.
|
64 |
+
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
65 |
+
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
66 |
+
pipe.fuse_lora()
|
67 |
+
# Use TCD scheduler to achieve better image quality
|
68 |
+
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
69 |
+
# lower eta results in more detail
|
70 |
+
eta=1.0
|
71 |
+
prompt="a photo of a cat"
|
72 |
+
image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, eta=eta).images[0]
|
73 |
+
```
|
74 |
+
|
75 |
+
|
76 |
+
### 1-step SDXL Unet
|
77 |
+
|
78 |
+
```python
|
79 |
+
import torch
|
80 |
+
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
|
81 |
+
from huggingface_hub import hf_hub_download
|
82 |
+
from safetensors.torch import load_file
|
83 |
+
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
84 |
+
repo_name = "ByteDance/Hyper-SD"
|
85 |
+
ckpt_name = "Hyper-SDXL-1step-Unet.safetensors"
|
86 |
+
# Load model.
|
87 |
+
unet = UNet2DConditionModel.from_config(base_model_id, subfolder="unet").to("cuda", torch.float16)
|
88 |
+
unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name), device="cuda"))
|
89 |
+
pipe = DiffusionPipeline.from_pretrained(base_model_id, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
90 |
+
# Use LCM scheduler instead of ddim scheduler to support specific timestep number inputs
|
91 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
92 |
+
# Set start timesteps to 800 in the one-step inference to get better results
|
93 |
+
prompt="a photo of a cat"
|
94 |
+
image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[800]).images[0]
|
95 |
+
```
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
## SD1.5-related models Usage
|
100 |
+
|
101 |
+
### 2-Steps, 4-Steps, 8-steps LoRA
|
102 |
+
```python
|
103 |
+
import torch
|
104 |
+
from diffusers import DiffusionPipeline, DDIMScheduler
|
105 |
+
from huggingface_hub import hf_hub_download
|
106 |
+
base_model_id = "stabilityai/stable-diffusion-v1-5"
|
107 |
+
repo_name = "ByteDance/Hyper-SD"
|
108 |
+
# Take 2-steps lora as an example
|
109 |
+
ckpt_name = "Hyper-SD15-2steps-lora.safetensors"
|
110 |
+
# Load model.
|
111 |
+
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
112 |
+
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
113 |
+
pipe.fuse_lora()
|
114 |
+
# Ensure ddim scheduler timestep spacing set as trailing
|
115 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
116 |
+
prompt="a photo of a cat"
|
117 |
+
image=pipe(prompt=prompt, num_inference_steps=2, guidance_scale=0).images[0]
|
118 |
+
```
|
119 |
+
|
120 |
+
|
121 |
+
### Unified LoRA
|
122 |
+
```python
|
123 |
+
import torch
|
124 |
+
from diffusers import DiffusionPipeline, TCDScheduler
|
125 |
+
from huggingface_hub import hf_hub_download
|
126 |
+
base_model_id = "stabilityai/stable-diffusion-v1-5"
|
127 |
+
repo_name = "ByteDance/Hyper-SD"
|
128 |
+
ckpt_name = "Hyper-SD15-1step-lora.safetensors"
|
129 |
+
# Load model.
|
130 |
+
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
131 |
+
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
|
132 |
+
pipe.fuse_lora()
|
133 |
+
# Use TCD scheduler to achieve better image quality
|
134 |
+
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
135 |
+
# Lower eta results in more detail
|
136 |
+
eta=1.0
|
137 |
+
prompt="a photo of a cat"
|
138 |
+
image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, eta=eta).images[0]
|
139 |
+
```
|
140 |
+
|
141 |
+
## Citation
|
142 |
+
```bibtex
|
143 |
+
@article{ren2024hypersd,
|
144 |
+
title={Hyper-SD: Trajectory Segmented Consistency Model for Efficient Image Synthesis},
|
145 |
+
author={Ren Yuxi, Xia Xin, Lu Yanzuo, Jiacheng, Wu Jie, Xie Pan, Wang Xin, Xiao Xuefeng},
|
146 |
+
year={2024},
|
147 |
+
journal={arXiv:2404.03407},
|
148 |
+
}
|
149 |
+
```
|