BlackB commited on
Commit
4698e0d
1 Parent(s): 30a9121

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +7 -0
  2. train/F1_curve.png +0 -0
  3. train/PR_curve.png +0 -0
  4. train/P_curve.png +0 -0
  5. train/R_curve.png +0 -0
  6. train/args.yaml +108 -0
  7. train/confusion_matrix.png +0 -0
  8. train/confusion_matrix_normalized.png +0 -0
  9. train/events.out.tfevents.1718656247.dev-a.1789075.0 +3 -0
  10. train/labels.jpg +0 -0
  11. train/labels_correlogram.jpg +0 -0
  12. train/results.csv +101 -0
  13. train/results.png +0 -0
  14. train/train_batch0.jpg +0 -0
  15. train/train_batch1.jpg +0 -0
  16. train/train_batch19440.jpg +0 -0
  17. train/train_batch19441.jpg +0 -0
  18. train/train_batch19442.jpg +0 -0
  19. train/train_batch2.jpg +0 -0
  20. train/val_batch0_labels.jpg +0 -0
  21. train/val_batch0_pred.jpg +0 -0
  22. train/val_batch1_labels.jpg +0 -0
  23. train/val_batch1_pred.jpg +0 -0
  24. train/val_batch2_labels.jpg +0 -0
  25. train/val_batch2_pred.jpg +0 -0
  26. train/weights/best.pt +3 -0
  27. train/weights/last.pt +3 -0
  28. train2/F1_curve.png +0 -0
  29. train2/PR_curve.png +0 -0
  30. train2/P_curve.png +0 -0
  31. train2/R_curve.png +0 -0
  32. train2/args.yaml +108 -0
  33. train2/confusion_matrix.png +0 -0
  34. train2/confusion_matrix_normalized.png +0 -0
  35. train2/events.out.tfevents.1718663778.dev-a.1867961.0 +3 -0
  36. train2/labels.jpg +0 -0
  37. train2/labels_correlogram.jpg +0 -0
  38. train2/results.csv +101 -0
  39. train2/results.png +0 -0
  40. train2/train_batch0.jpg +0 -0
  41. train2/train_batch1.jpg +0 -0
  42. train2/train_batch19440.jpg +0 -0
  43. train2/train_batch19441.jpg +0 -0
  44. train2/train_batch19442.jpg +0 -0
  45. train2/train_batch2.jpg +0 -0
  46. train2/val_batch0_labels.jpg +0 -0
  47. train2/val_batch0_pred.jpg +0 -0
  48. train2/val_batch1_labels.jpg +0 -0
  49. train2/val_batch1_pred.jpg +0 -0
  50. train2/val_batch2_labels.jpg +0 -0
.gitattributes CHANGED
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ train4/train_batch0.jpg filter=lfs diff=lfs merge=lfs -text
37
+ train4/val_batch0_labels.jpg filter=lfs diff=lfs merge=lfs -text
38
+ train4/val_batch0_pred.jpg filter=lfs diff=lfs merge=lfs -text
39
+ train4/val_batch1_labels.jpg filter=lfs diff=lfs merge=lfs -text
40
+ train4/val_batch1_pred.jpg filter=lfs diff=lfs merge=lfs -text
41
+ train4/val_batch2_labels.jpg filter=lfs diff=lfs merge=lfs -text
42
+ train4/val_batch2_pred.jpg filter=lfs diff=lfs merge=lfs -text
train/F1_curve.png ADDED
train/PR_curve.png ADDED
train/P_curve.png ADDED
train/R_curve.png ADDED
train/args.yaml ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: detect
2
+ mode: train
3
+ model: yolov9c.pt
4
+ data: data.yaml
5
+ epochs: 100
6
+ time: null
7
+ patience: 100
8
+ batch: 16
9
+ imgsz: 1280
10
+ save: true
11
+ save_period: -1
12
+ cache: false
13
+ device:
14
+ - 0
15
+ - 1
16
+ workers: 8
17
+ project: null
18
+ name: train
19
+ exist_ok: false
20
+ pretrained: true
21
+ optimizer: auto
22
+ verbose: true
23
+ seed: 0
24
+ deterministic: true
25
+ single_cls: false
26
+ rect: false
27
+ cos_lr: false
28
+ close_mosaic: 10
29
+ resume: false
30
+ amp: true
31
+ fraction: 1.0
32
+ profile: false
33
+ freeze: null
34
+ multi_scale: false
35
+ overlap_mask: true
36
+ mask_ratio: 4
37
+ dropout: 0.0
38
+ val: true
39
+ split: val
40
+ save_json: false
41
+ save_hybrid: false
42
+ conf: null
43
+ iou: 0.7
44
+ max_det: 300
45
+ half: false
46
+ dnn: false
47
+ plots: true
48
+ source: null
49
+ vid_stride: 1
50
+ stream_buffer: false
51
+ visualize: false
52
+ augment: false
53
+ agnostic_nms: false
54
+ classes: null
55
+ retina_masks: false
56
+ embed: null
57
+ show: false
58
+ save_frames: false
59
+ save_txt: false
60
+ save_conf: false
61
+ save_crop: false
62
+ show_labels: true
63
+ show_conf: true
64
+ show_boxes: true
65
+ line_width: null
66
+ format: torchscript
67
+ keras: false
68
+ optimize: false
69
+ int8: false
70
+ dynamic: false
71
+ simplify: false
72
+ opset: null
73
+ workspace: 4
74
+ nms: false
75
+ lr0: 0.01
76
+ lrf: 0.01
77
+ momentum: 0.937
78
+ weight_decay: 0.0005
79
+ warmup_epochs: 3.0
80
+ warmup_momentum: 0.8
81
+ warmup_bias_lr: 0.1
82
+ box: 7.5
83
+ cls: 0.5
84
+ dfl: 1.5
85
+ pose: 12.0
86
+ kobj: 1.0
87
+ label_smoothing: 0.0
88
+ nbs: 64
89
+ hsv_h: 0.015
90
+ hsv_s: 0.7
91
+ hsv_v: 0.4
92
+ degrees: 0.0
93
+ translate: 0.1
94
+ scale: 0.5
95
+ shear: 0.0
96
+ perspective: 0.0
97
+ flipud: 0.0
98
+ fliplr: 0.5
99
+ bgr: 0.0
100
+ mosaic: 1.0
101
+ mixup: 0.0
102
+ copy_paste: 0.0
103
+ auto_augment: randaugment
104
+ erasing: 0.4
105
+ crop_fraction: 1.0
106
+ cfg: null
107
+ tracker: botsort.yaml
108
+ save_dir: runs/detect/train
train/confusion_matrix.png ADDED
train/confusion_matrix_normalized.png ADDED
train/events.out.tfevents.1718656247.dev-a.1789075.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0978c08007edb9e4d8b71ae847b26097cb089302adb388829306d6139cc33568
3
+ size 544469
train/labels.jpg ADDED
train/labels_correlogram.jpg ADDED
train/results.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
2
+ 1, 0.93802, 0.85463, 1.2939, 0.81835, 0.88469, 0.91841, 0.69394, 0.89754, 0.82821, 1.2814, 0.0002369, 0.0002369, 0.0002369
3
+ 2, 0.79989, 0.5953, 1.1921, 0.84225, 0.8707, 0.93305, 0.73596, 0.80269, 0.62236, 1.2156, 0.0004702, 0.0004702, 0.0004702
4
+ 3, 0.78664, 0.57263, 1.1843, 0.83733, 0.8823, 0.92963, 0.74787, 0.76114, 0.58697, 1.1888, 0.00069878, 0.00069878, 0.00069878
5
+ 4, 0.78971, 0.56178, 1.1783, 0.88699, 0.85708, 0.94421, 0.76301, 0.7476, 0.52661, 1.1626, 0.00069279, 0.00069279, 0.00069279
6
+ 5, 0.74847, 0.53278, 1.158, 0.87529, 0.87029, 0.94262, 0.7547, 0.77064, 0.5222, 1.1786, 0.00068573, 0.00068573, 0.00068573
7
+ 6, 0.74125, 0.51669, 1.155, 0.88887, 0.88156, 0.95278, 0.78148, 0.72443, 0.47938, 1.1353, 0.00067866, 0.00067866, 0.00067866
8
+ 7, 0.72581, 0.51131, 1.1383, 0.87639, 0.88499, 0.94966, 0.78217, 0.71354, 0.48689, 1.1378, 0.00067159, 0.00067159, 0.00067159
9
+ 8, 0.71856, 0.49794, 1.14, 0.88897, 0.87839, 0.95365, 0.79699, 0.68434, 0.46492, 1.1129, 0.00066452, 0.00066452, 0.00066452
10
+ 9, 0.70813, 0.49267, 1.1283, 0.87768, 0.88302, 0.94918, 0.78992, 0.69507, 0.49289, 1.1336, 0.00065745, 0.00065745, 0.00065745
11
+ 10, 0.69999, 0.48669, 1.1235, 0.88236, 0.89014, 0.95399, 0.79807, 0.68192, 0.47747, 1.1282, 0.00065038, 0.00065038, 0.00065038
12
+ 11, 0.69257, 0.48112, 1.1239, 0.87679, 0.88592, 0.95039, 0.78612, 0.70528, 0.50264, 1.1426, 0.00064331, 0.00064331, 0.00064331
13
+ 12, 0.68998, 0.47525, 1.1159, 0.89668, 0.88716, 0.95817, 0.79384, 0.71202, 0.45013, 1.141, 0.00063625, 0.00063625, 0.00063625
14
+ 13, 0.67231, 0.46633, 1.1091, 0.89155, 0.88783, 0.95601, 0.8031, 0.67121, 0.45191, 1.1001, 0.00062918, 0.00062918, 0.00062918
15
+ 14, 0.67736, 0.46829, 1.1064, 0.88034, 0.90066, 0.95484, 0.80086, 0.6765, 0.45712, 1.1263, 0.00062211, 0.00062211, 0.00062211
16
+ 15, 0.66187, 0.45431, 1.1027, 0.88874, 0.88723, 0.95351, 0.80132, 0.67546, 0.46015, 1.1019, 0.00061504, 0.00061504, 0.00061504
17
+ 16, 0.655, 0.45182, 1.0921, 0.89159, 0.88619, 0.95521, 0.79988, 0.67868, 0.44943, 1.1187, 0.00060797, 0.00060797, 0.00060797
18
+ 17, 0.64976, 0.44915, 1.0951, 0.88339, 0.89089, 0.95476, 0.79788, 0.68689, 0.46123, 1.1201, 0.0006009, 0.0006009, 0.0006009
19
+ 18, 0.6447, 0.44209, 1.0916, 0.88434, 0.89484, 0.95522, 0.80522, 0.66989, 0.45228, 1.1121, 0.00059383, 0.00059383, 0.00059383
20
+ 19, 0.63726, 0.43239, 1.0807, 0.89169, 0.88728, 0.95706, 0.80816, 0.66151, 0.4413, 1.1052, 0.00058677, 0.00058677, 0.00058677
21
+ 20, 0.63937, 0.43405, 1.0882, 0.88529, 0.89208, 0.9562, 0.81329, 0.65108, 0.44336, 1.1085, 0.0005797, 0.0005797, 0.0005797
22
+ 21, 0.62886, 0.42633, 1.0764, 0.88818, 0.8922, 0.95577, 0.81236, 0.65003, 0.44002, 1.0931, 0.00057263, 0.00057263, 0.00057263
23
+ 22, 0.62546, 0.42683, 1.0721, 0.89605, 0.89059, 0.95782, 0.81883, 0.6393, 0.42779, 1.1001, 0.00056556, 0.00056556, 0.00056556
24
+ 23, 0.62295, 0.41975, 1.0798, 0.87565, 0.89372, 0.95248, 0.8028, 0.66772, 0.46012, 1.1131, 0.00055849, 0.00055849, 0.00055849
25
+ 24, 0.61604, 0.42136, 1.0751, 0.8848, 0.89706, 0.95666, 0.81167, 0.65705, 0.43951, 1.1131, 0.00055142, 0.00055142, 0.00055142
26
+ 25, 0.61331, 0.41348, 1.075, 0.8932, 0.88835, 0.95639, 0.81299, 0.65878, 0.43424, 1.1128, 0.00054435, 0.00054435, 0.00054435
27
+ 26, 0.60879, 0.40982, 1.0631, 0.89677, 0.88827, 0.95649, 0.81458, 0.65246, 0.43291, 1.1, 0.00053728, 0.00053728, 0.00053728
28
+ 27, 0.60438, 0.4027, 1.0554, 0.89173, 0.88573, 0.95683, 0.81743, 0.64418, 0.42734, 1.0865, 0.00053022, 0.00053022, 0.00053022
29
+ 28, 0.60392, 0.40554, 1.0592, 0.88648, 0.89345, 0.95604, 0.81649, 0.64554, 0.42414, 1.1025, 0.00052315, 0.00052315, 0.00052315
30
+ 29, 0.59612, 0.39609, 1.0532, 0.88911, 0.88977, 0.95581, 0.81502, 0.65578, 0.4322, 1.1018, 0.00051608, 0.00051608, 0.00051608
31
+ 30, 0.59228, 0.39587, 1.052, 0.89538, 0.88745, 0.95808, 0.82048, 0.64426, 0.4199, 1.1005, 0.00050901, 0.00050901, 0.00050901
32
+ 31, 0.58671, 0.38786, 1.0444, 0.90144, 0.88245, 0.95707, 0.81264, 0.65741, 0.43319, 1.0945, 0.00050194, 0.00050194, 0.00050194
33
+ 32, 0.58291, 0.38549, 1.0378, 0.88776, 0.89136, 0.95548, 0.81109, 0.65386, 0.42305, 1.1012, 0.00049487, 0.00049487, 0.00049487
34
+ 33, 0.58164, 0.38083, 1.0438, 0.88685, 0.89156, 0.9561, 0.81496, 0.65589, 0.4254, 1.1163, 0.0004878, 0.0004878, 0.0004878
35
+ 34, 0.58043, 0.38165, 1.0474, 0.88321, 0.89171, 0.95408, 0.81055, 0.65613, 0.43047, 1.1115, 0.00048074, 0.00048074, 0.00048074
36
+ 35, 0.57629, 0.37324, 1.0351, 0.88799, 0.89933, 0.95714, 0.82027, 0.64909, 0.42088, 1.0825, 0.00047367, 0.00047367, 0.00047367
37
+ 36, 0.57211, 0.37101, 1.023, 0.89434, 0.88275, 0.95385, 0.81207, 0.65602, 0.42654, 1.092, 0.0004666, 0.0004666, 0.0004666
38
+ 37, 0.57018, 0.36993, 1.0289, 0.88597, 0.89124, 0.95473, 0.81577, 0.64894, 0.42304, 1.0907, 0.00045953, 0.00045953, 0.00045953
39
+ 38, 0.56401, 0.366, 1.0331, 0.89338, 0.89029, 0.9552, 0.81748, 0.6536, 0.41931, 1.114, 0.00045246, 0.00045246, 0.00045246
40
+ 39, 0.55962, 0.36125, 1.0237, 0.88576, 0.89515, 0.95597, 0.81845, 0.65549, 0.42081, 1.1091, 0.00044539, 0.00044539, 0.00044539
41
+ 40, 0.55746, 0.35934, 1.0283, 0.88721, 0.89596, 0.95501, 0.8179, 0.65095, 0.42557, 1.1087, 0.00043832, 0.00043832, 0.00043832
42
+ 41, 0.54869, 0.34917, 1.016, 0.89157, 0.88857, 0.95484, 0.8176, 0.6464, 0.42163, 1.1059, 0.00043126, 0.00043126, 0.00043126
43
+ 42, 0.55507, 0.35341, 1.0236, 0.89145, 0.88868, 0.95501, 0.81604, 0.64801, 0.42684, 1.1054, 0.00042419, 0.00042419, 0.00042419
44
+ 43, 0.54785, 0.34621, 1.0167, 0.8943, 0.88716, 0.95394, 0.81587, 0.65643, 0.432, 1.1258, 0.00041712, 0.00041712, 0.00041712
45
+ 44, 0.54243, 0.3418, 1.0148, 0.8831, 0.89922, 0.95441, 0.81914, 0.6502, 0.42473, 1.1124, 0.00041005, 0.00041005, 0.00041005
46
+ 45, 0.53188, 0.33599, 1.0012, 0.88424, 0.89566, 0.9537, 0.81968, 0.64587, 0.42939, 1.1114, 0.00040298, 0.00040298, 0.00040298
47
+ 46, 0.53181, 0.33198, 1.0012, 0.88419, 0.89141, 0.95361, 0.81865, 0.65361, 0.42854, 1.1213, 0.00039591, 0.00039591, 0.00039591
48
+ 47, 0.5333, 0.35055, 1.007, 0.88391, 0.89384, 0.95355, 0.81735, 0.65321, 0.42422, 1.1153, 0.00038884, 0.00038884, 0.00038884
49
+ 48, 0.52764, 0.32852, 1.0065, 0.88348, 0.89581, 0.95318, 0.81754, 0.65113, 0.42661, 1.1235, 0.00038178, 0.00038178, 0.00038178
50
+ 49, 0.52527, 0.32723, 1.0011, 0.88832, 0.88962, 0.95113, 0.81614, 0.64854, 0.43249, 1.122, 0.00037471, 0.00037471, 0.00037471
51
+ 50, 0.52104, 0.32281, 0.9989, 0.88744, 0.89029, 0.95131, 0.8184, 0.64476, 0.42849, 1.1289, 0.00036764, 0.00036764, 0.00036764
52
+ 51, 0.51735, 0.31685, 0.99563, 0.88368, 0.89604, 0.95207, 0.8204, 0.64754, 0.42687, 1.1176, 0.00036057, 0.00036057, 0.00036057
53
+ 52, 0.51728, 0.31647, 0.99205, 0.89327, 0.88462, 0.95303, 0.8215, 0.65534, 0.42792, 1.1108, 0.0003535, 0.0003535, 0.0003535
54
+ 53, 0.51237, 0.30925, 0.98283, 0.88127, 0.8952, 0.95231, 0.81859, 0.65241, 0.42805, 1.1106, 0.00034643, 0.00034643, 0.00034643
55
+ 54, 0.51317, 0.30994, 0.99486, 0.88238, 0.89432, 0.95107, 0.81993, 0.64491, 0.43172, 1.1166, 0.00033936, 0.00033936, 0.00033936
56
+ 55, 0.50978, 0.30608, 0.98672, 0.89117, 0.88558, 0.94981, 0.81194, 0.65779, 0.43729, 1.1109, 0.0003323, 0.0003323, 0.0003323
57
+ 56, 0.50779, 0.30728, 0.98735, 0.88648, 0.89405, 0.95075, 0.81905, 0.65054, 0.43556, 1.1162, 0.00032523, 0.00032523, 0.00032523
58
+ 57, 0.50197, 0.30094, 0.98189, 0.8923, 0.88238, 0.94972, 0.81624, 0.65873, 0.44173, 1.131, 0.00031816, 0.00031816, 0.00031816
59
+ 58, 0.4971, 0.29767, 0.98059, 0.88397, 0.89441, 0.95112, 0.82077, 0.65048, 0.43369, 1.1239, 0.00031109, 0.00031109, 0.00031109
60
+ 59, 0.49618, 0.29359, 0.98118, 0.89041, 0.88652, 0.94843, 0.81835, 0.65262, 0.44011, 1.1271, 0.00030402, 0.00030402, 0.00030402
61
+ 60, 0.49294, 0.29407, 0.9877, 0.88653, 0.88768, 0.94852, 0.82018, 0.64684, 0.4417, 1.1343, 0.00029695, 0.00029695, 0.00029695
62
+ 61, 0.48847, 0.28695, 0.97584, 0.88317, 0.89365, 0.94893, 0.81942, 0.64965, 0.44029, 1.1276, 0.00028988, 0.00028988, 0.00028988
63
+ 62, 0.48688, 0.28888, 0.97714, 0.88325, 0.88699, 0.94778, 0.81963, 0.64953, 0.44309, 1.1308, 0.00028282, 0.00028282, 0.00028282
64
+ 63, 0.48937, 0.28804, 0.9786, 0.88185, 0.89013, 0.94804, 0.81794, 0.65302, 0.44782, 1.1366, 0.00027575, 0.00027575, 0.00027575
65
+ 64, 0.48126, 0.28238, 0.97284, 0.88972, 0.88425, 0.9493, 0.82232, 0.64972, 0.44561, 1.1296, 0.00026868, 0.00026868, 0.00026868
66
+ 65, 0.47768, 0.27867, 0.96343, 0.89042, 0.88298, 0.94794, 0.8199, 0.65226, 0.44483, 1.1249, 0.00026161, 0.00026161, 0.00026161
67
+ 66, 0.4739, 0.27813, 0.9653, 0.88601, 0.88755, 0.94637, 0.81496, 0.65435, 0.44831, 1.1344, 0.00025454, 0.00025454, 0.00025454
68
+ 67, 0.46958, 0.27252, 0.96014, 0.88983, 0.88069, 0.94579, 0.81535, 0.65261, 0.4571, 1.1368, 0.00024747, 0.00024747, 0.00024747
69
+ 68, 0.47259, 0.27186, 0.95817, 0.88716, 0.88656, 0.94612, 0.81583, 0.65135, 0.451, 1.1289, 0.0002404, 0.0002404, 0.0002404
70
+ 69, 0.4681, 0.26975, 0.96054, 0.88615, 0.8935, 0.94783, 0.82086, 0.65064, 0.45035, 1.1347, 0.00023334, 0.00023334, 0.00023334
71
+ 70, 0.47118, 0.26982, 0.96758, 0.88529, 0.88763, 0.94715, 0.82029, 0.64789, 0.45383, 1.1455, 0.00022627, 0.00022627, 0.00022627
72
+ 71, 0.46941, 0.27141, 0.97152, 0.88143, 0.89101, 0.94602, 0.81593, 0.65212, 0.45536, 1.1489, 0.0002192, 0.0002192, 0.0002192
73
+ 72, 0.46172, 0.26563, 0.96066, 0.88732, 0.88701, 0.94686, 0.81881, 0.64962, 0.45639, 1.139, 0.00021213, 0.00021213, 0.00021213
74
+ 73, 0.463, 0.26658, 0.95392, 0.88247, 0.88984, 0.94687, 0.81999, 0.65269, 0.45659, 1.1252, 0.00020506, 0.00020506, 0.00020506
75
+ 74, 0.45871, 0.2605, 0.95582, 0.89369, 0.88274, 0.94688, 0.82009, 0.65389, 0.45139, 1.1321, 0.00019799, 0.00019799, 0.00019799
76
+ 75, 0.45612, 0.25882, 0.95085, 0.88536, 0.8905, 0.94653, 0.82027, 0.65018, 0.45801, 1.1249, 0.00019092, 0.00019092, 0.00019092
77
+ 76, 0.45245, 0.25806, 0.94734, 0.89356, 0.87963, 0.94642, 0.82226, 0.64829, 0.46293, 1.1314, 0.00018385, 0.00018385, 0.00018385
78
+ 77, 0.4509, 0.25497, 0.94661, 0.8817, 0.88932, 0.94454, 0.82109, 0.649, 0.46225, 1.1352, 0.00017679, 0.00017679, 0.00017679
79
+ 78, 0.44378, 0.25257, 0.94381, 0.8892, 0.88106, 0.94409, 0.82007, 0.6552, 0.47031, 1.1378, 0.00016972, 0.00016972, 0.00016972
80
+ 79, 0.44705, 0.25209, 0.94453, 0.87883, 0.8891, 0.94346, 0.81701, 0.65693, 0.47034, 1.1359, 0.00016265, 0.00016265, 0.00016265
81
+ 80, 0.44102, 0.24872, 0.93967, 0.88087, 0.88794, 0.94189, 0.81658, 0.65273, 0.47509, 1.1357, 0.00015558, 0.00015558, 0.00015558
82
+ 81, 0.44111, 0.24753, 0.93847, 0.89195, 0.87914, 0.94338, 0.81917, 0.65153, 0.47148, 1.1335, 0.00014851, 0.00014851, 0.00014851
83
+ 82, 0.43596, 0.24332, 0.93326, 0.88632, 0.88443, 0.94281, 0.81946, 0.65169, 0.47329, 1.1317, 0.00014144, 0.00014144, 0.00014144
84
+ 83, 0.43756, 0.24369, 0.94115, 0.88806, 0.87872, 0.94358, 0.81853, 0.65436, 0.47543, 1.1515, 0.00013437, 0.00013437, 0.00013437
85
+ 84, 0.43373, 0.24114, 0.93822, 0.88464, 0.88522, 0.94324, 0.8177, 0.65883, 0.47889, 1.1547, 0.00012731, 0.00012731, 0.00012731
86
+ 85, 0.42926, 0.23814, 0.93649, 0.88811, 0.88565, 0.94469, 0.82188, 0.6534, 0.47368, 1.1392, 0.00012024, 0.00012024, 0.00012024
87
+ 86, 0.42887, 0.24019, 0.93686, 0.88825, 0.8803, 0.94222, 0.81799, 0.65538, 0.47979, 1.156, 0.00011317, 0.00011317, 0.00011317
88
+ 87, 0.42813, 0.23617, 0.93772, 0.8894, 0.88238, 0.9424, 0.82097, 0.65211, 0.48274, 1.1497, 0.0001061, 0.0001061, 0.0001061
89
+ 88, 0.42488, 0.23529, 0.93225, 0.88538, 0.88379, 0.94151, 0.82007, 0.65468, 0.48361, 1.158, 9.9032e-05, 9.9032e-05, 9.9032e-05
90
+ 89, 0.42199, 0.2327, 0.93222, 0.88528, 0.88574, 0.94235, 0.81956, 0.6548, 0.4855, 1.1517, 9.1963e-05, 9.1963e-05, 9.1963e-05
91
+ 90, 0.41844, 0.2295, 0.92857, 0.88844, 0.87962, 0.94158, 0.81821, 0.6558, 0.48914, 1.1589, 8.4895e-05, 8.4895e-05, 8.4895e-05
92
+ 91, 0.39058, 0.20345, 0.90867, 0.8882, 0.87929, 0.94192, 0.81475, 0.6632, 0.4815, 1.1755, 7.7826e-05, 7.7826e-05, 7.7826e-05
93
+ 92, 0.3785, 0.19531, 0.9007, 0.88716, 0.87778, 0.94175, 0.8185, 0.65887, 0.49013, 1.165, 7.0757e-05, 7.0757e-05, 7.0757e-05
94
+ 93, 0.37855, 0.19382, 0.89748, 0.89531, 0.87373, 0.94235, 0.81842, 0.65872, 0.48715, 1.1589, 6.3689e-05, 6.3689e-05, 6.3689e-05
95
+ 94, 0.3721, 0.18958, 0.89175, 0.88115, 0.88425, 0.93949, 0.81646, 0.65809, 0.49761, 1.1564, 5.662e-05, 5.662e-05, 5.662e-05
96
+ 95, 0.36736, 0.18457, 0.88868, 0.89204, 0.87506, 0.94036, 0.81843, 0.65563, 0.49616, 1.1546, 4.9552e-05, 4.9552e-05, 4.9552e-05
97
+ 96, 0.36214, 0.182, 0.88429, 0.88249, 0.8826, 0.93968, 0.81723, 0.65676, 0.50138, 1.1638, 4.2483e-05, 4.2483e-05, 4.2483e-05
98
+ 97, 0.36023, 0.18262, 0.88712, 0.89127, 0.87238, 0.93813, 0.81543, 0.65832, 0.50293, 1.1674, 3.5414e-05, 3.5414e-05, 3.5414e-05
99
+ 98, 0.36219, 0.1819, 0.89043, 0.89187, 0.87626, 0.93943, 0.81869, 0.6547, 0.50041, 1.1647, 2.8346e-05, 2.8346e-05, 2.8346e-05
100
+ 99, 0.35875, 0.17794, 0.88446, 0.89036, 0.87693, 0.93812, 0.81789, 0.65589, 0.50863, 1.1655, 2.1277e-05, 2.1277e-05, 2.1277e-05
101
+ 100, 0.35293, 0.17783, 0.88262, 0.88822, 0.87766, 0.9387, 0.81851, 0.65584, 0.50958, 1.1633, 1.4209e-05, 1.4209e-05, 1.4209e-05
train/results.png ADDED
train/train_batch0.jpg ADDED
train/train_batch1.jpg ADDED
train/train_batch19440.jpg ADDED
train/train_batch19441.jpg ADDED
train/train_batch19442.jpg ADDED
train/train_batch2.jpg ADDED
train/val_batch0_labels.jpg ADDED
train/val_batch0_pred.jpg ADDED
train/val_batch1_labels.jpg ADDED
train/val_batch1_pred.jpg ADDED
train/val_batch2_labels.jpg ADDED
train/val_batch2_pred.jpg ADDED
train/weights/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3356617e5f58a15312d9f76d754e3d15bc1862f0f448796ca670e5fdffe84b4b
3
+ size 51661755
train/weights/last.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df8466c2f285ac8ba547e28f86f0a0d715f0a7c1bfdce01dfa8924cdd84b23e3
3
+ size 51666043
train2/F1_curve.png ADDED
train2/PR_curve.png ADDED
train2/P_curve.png ADDED
train2/R_curve.png ADDED
train2/args.yaml ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: detect
2
+ mode: train
3
+ model: yolov8l.pt
4
+ data: data.yaml
5
+ epochs: 100
6
+ time: null
7
+ patience: 100
8
+ batch: 16
9
+ imgsz: 1280
10
+ save: true
11
+ save_period: -1
12
+ cache: false
13
+ device:
14
+ - 0
15
+ - 1
16
+ workers: 8
17
+ project: null
18
+ name: train2
19
+ exist_ok: false
20
+ pretrained: true
21
+ optimizer: auto
22
+ verbose: true
23
+ seed: 0
24
+ deterministic: true
25
+ single_cls: false
26
+ rect: false
27
+ cos_lr: false
28
+ close_mosaic: 10
29
+ resume: false
30
+ amp: true
31
+ fraction: 1.0
32
+ profile: false
33
+ freeze: null
34
+ multi_scale: false
35
+ overlap_mask: true
36
+ mask_ratio: 4
37
+ dropout: 0.0
38
+ val: true
39
+ split: val
40
+ save_json: false
41
+ save_hybrid: false
42
+ conf: null
43
+ iou: 0.7
44
+ max_det: 300
45
+ half: false
46
+ dnn: false
47
+ plots: true
48
+ source: null
49
+ vid_stride: 1
50
+ stream_buffer: false
51
+ visualize: false
52
+ augment: false
53
+ agnostic_nms: false
54
+ classes: null
55
+ retina_masks: false
56
+ embed: null
57
+ show: false
58
+ save_frames: false
59
+ save_txt: false
60
+ save_conf: false
61
+ save_crop: false
62
+ show_labels: true
63
+ show_conf: true
64
+ show_boxes: true
65
+ line_width: null
66
+ format: torchscript
67
+ keras: false
68
+ optimize: false
69
+ int8: false
70
+ dynamic: false
71
+ simplify: false
72
+ opset: null
73
+ workspace: 4
74
+ nms: false
75
+ lr0: 0.01
76
+ lrf: 0.01
77
+ momentum: 0.937
78
+ weight_decay: 0.0005
79
+ warmup_epochs: 3.0
80
+ warmup_momentum: 0.8
81
+ warmup_bias_lr: 0.1
82
+ box: 7.5
83
+ cls: 0.5
84
+ dfl: 1.5
85
+ pose: 12.0
86
+ kobj: 1.0
87
+ label_smoothing: 0.0
88
+ nbs: 64
89
+ hsv_h: 0.015
90
+ hsv_s: 0.7
91
+ hsv_v: 0.4
92
+ degrees: 0.0
93
+ translate: 0.1
94
+ scale: 0.5
95
+ shear: 0.0
96
+ perspective: 0.0
97
+ flipud: 0.0
98
+ fliplr: 0.5
99
+ bgr: 0.0
100
+ mosaic: 1.0
101
+ mixup: 0.0
102
+ copy_paste: 0.0
103
+ auto_augment: randaugment
104
+ erasing: 0.4
105
+ crop_fraction: 1.0
106
+ cfg: null
107
+ tracker: botsort.yaml
108
+ save_dir: runs/detect/train2
train2/confusion_matrix.png ADDED
train2/confusion_matrix_normalized.png ADDED
train2/events.out.tfevents.1718663778.dev-a.1867961.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:358e1971b7499a8db4fa8cdf59ad5c767d9f8b1121fa194e63236f2a786461e4
3
+ size 358949
train2/labels.jpg ADDED
train2/labels_correlogram.jpg ADDED
train2/results.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
2
+ 1, 0.91597, 0.81708, 1.2764, 0.83277, 0.85387, 0.91188, 0.70636, 0.83859, 0.84443, 1.2465, 0.0002369, 0.0002369, 0.0002369
3
+ 2, 0.79922, 0.60093, 1.1955, 0.8566, 0.88051, 0.93671, 0.74345, 0.78271, 0.62506, 1.2077, 0.0004702, 0.0004702, 0.0004702
4
+ 3, 0.79498, 0.57688, 1.1897, 0.84014, 0.88489, 0.93226, 0.74711, 0.76814, 0.6338, 1.1971, 0.00069878, 0.00069878, 0.00069878
5
+ 4, 0.78141, 0.55691, 1.1817, 0.8797, 0.87104, 0.94749, 0.77441, 0.72483, 0.50458, 1.152, 0.00069279, 0.00069279, 0.00069279
6
+ 5, 0.74735, 0.53435, 1.1607, 0.88854, 0.86842, 0.94581, 0.7728, 0.72564, 0.50331, 1.1618, 0.00068573, 0.00068573, 0.00068573
7
+ 6, 0.73196, 0.52038, 1.1613, 0.8857, 0.87153, 0.94799, 0.77124, 0.73271, 0.504, 1.1631, 0.00067866, 0.00067866, 0.00067866
8
+ 7, 0.72028, 0.50519, 1.1338, 0.88181, 0.88478, 0.95155, 0.79033, 0.6976, 0.47412, 1.1361, 0.00067159, 0.00067159, 0.00067159
9
+ 8, 0.7069, 0.49451, 1.1349, 0.88609, 0.87969, 0.9523, 0.79022, 0.70275, 0.47178, 1.139, 0.00066452, 0.00066452, 0.00066452
10
+ 9, 0.6948, 0.48975, 1.1235, 0.87044, 0.88846, 0.94909, 0.79046, 0.68849, 0.48172, 1.1163, 0.00065745, 0.00065745, 0.00065745
11
+ 10, 0.68773, 0.48345, 1.1235, 0.89098, 0.88342, 0.95388, 0.79458, 0.68909, 0.46584, 1.1357, 0.00065038, 0.00065038, 0.00065038
12
+ 11, 0.68206, 0.47577, 1.12, 0.88054, 0.89148, 0.95326, 0.7931, 0.69565, 0.47589, 1.1334, 0.00064331, 0.00064331, 0.00064331
13
+ 12, 0.6723, 0.46542, 1.1069, 0.88482, 0.8938, 0.95367, 0.8069, 0.66037, 0.45778, 1.125, 0.00063625, 0.00063625, 0.00063625
14
+ 13, 0.65653, 0.45709, 1.1005, 0.8859, 0.89176, 0.95541, 0.80272, 0.68024, 0.44883, 1.1176, 0.00062918, 0.00062918, 0.00062918
15
+ 14, 0.65557, 0.45669, 1.1048, 0.88361, 0.88784, 0.95391, 0.802, 0.67342, 0.45876, 1.1311, 0.00062211, 0.00062211, 0.00062211
16
+ 15, 0.64847, 0.444, 1.1001, 0.88667, 0.88708, 0.95452, 0.8085, 0.6557, 0.45151, 1.1128, 0.00061504, 0.00061504, 0.00061504
17
+ 16, 0.63763, 0.44025, 1.0911, 0.88737, 0.88641, 0.95339, 0.80439, 0.66626, 0.44524, 1.1176, 0.00060797, 0.00060797, 0.00060797
18
+ 17, 0.63037, 0.43546, 1.0851, 0.89654, 0.88086, 0.95573, 0.80547, 0.67027, 0.44356, 1.1238, 0.0006009, 0.0006009, 0.0006009
19
+ 18, 0.62823, 0.43213, 1.0859, 0.88855, 0.89613, 0.95694, 0.81501, 0.65373, 0.43532, 1.1019, 0.00059383, 0.00059383, 0.00059383
20
+ 19, 0.61706, 0.41712, 1.0738, 0.89621, 0.88775, 0.95765, 0.8152, 0.65055, 0.43142, 1.102, 0.00058677, 0.00058677, 0.00058677
21
+ 20, 0.61967, 0.4161, 1.0735, 0.88025, 0.89693, 0.95564, 0.81181, 0.65113, 0.4395, 1.0989, 0.0005797, 0.0005797, 0.0005797
22
+ 21, 0.60804, 0.40807, 1.0658, 0.89169, 0.88678, 0.95515, 0.8101, 0.65465, 0.4366, 1.1061, 0.00057263, 0.00057263, 0.00057263
23
+ 22, 0.60486, 0.40939, 1.0621, 0.88972, 0.88997, 0.95653, 0.81562, 0.64689, 0.42474, 1.1101, 0.00056556, 0.00056556, 0.00056556
24
+ 23, 0.59916, 0.40191, 1.0628, 0.89587, 0.88619, 0.95524, 0.80907, 0.65731, 0.43362, 1.1053, 0.00055849, 0.00055849, 0.00055849
25
+ 24, 0.59483, 0.40336, 1.0553, 0.88509, 0.89158, 0.95461, 0.81007, 0.65999, 0.43609, 1.1043, 0.00055142, 0.00055142, 0.00055142
26
+ 25, 0.58929, 0.39242, 1.0481, 0.88279, 0.89447, 0.95396, 0.81255, 0.65077, 0.43203, 1.1068, 0.00054435, 0.00054435, 0.00054435
27
+ 26, 0.58754, 0.39382, 1.058, 0.8931, 0.89268, 0.95622, 0.8157, 0.64754, 0.42733, 1.1184, 0.00053728, 0.00053728, 0.00053728
28
+ 27, 0.57968, 0.38219, 1.0499, 0.89422, 0.88708, 0.95732, 0.81791, 0.64627, 0.41987, 1.0947, 0.00053022, 0.00053022, 0.00053022
29
+ 28, 0.57773, 0.38292, 1.0415, 0.89273, 0.88656, 0.9545, 0.81504, 0.64097, 0.435, 1.1066, 0.00052315, 0.00052315, 0.00052315
30
+ 29, 0.57064, 0.37322, 1.0408, 0.89295, 0.88903, 0.95542, 0.81334, 0.65374, 0.42388, 1.1158, 0.00051608, 0.00051608, 0.00051608
31
+ 30, 0.56768, 0.37276, 1.043, 0.88423, 0.89947, 0.95598, 0.81876, 0.64812, 0.42659, 1.116, 0.00050901, 0.00050901, 0.00050901
32
+ 31, 0.56239, 0.36763, 1.0368, 0.88801, 0.8906, 0.95405, 0.80929, 0.65485, 0.43719, 1.1228, 0.00050194, 0.00050194, 0.00050194
33
+ 32, 0.55756, 0.36075, 1.0304, 0.88284, 0.89887, 0.95312, 0.81671, 0.64017, 0.43077, 1.1025, 0.00049487, 0.00049487, 0.00049487
34
+ 33, 0.55598, 0.35649, 1.0276, 0.88921, 0.88342, 0.95335, 0.81412, 0.65262, 0.43192, 1.1061, 0.0004878, 0.0004878, 0.0004878
35
+ 34, 0.55336, 0.35616, 1.0263, 0.88442, 0.90022, 0.95721, 0.82172, 0.64154, 0.41623, 1.1064, 0.00048074, 0.00048074, 0.00048074
36
+ 35, 0.54711, 0.3504, 1.0213, 0.89007, 0.89507, 0.95574, 0.82151, 0.63826, 0.42033, 1.1124, 0.00047367, 0.00047367, 0.00047367
37
+ 36, 0.54314, 0.34474, 1.0201, 0.88736, 0.89893, 0.95656, 0.81759, 0.6445, 0.41733, 1.1059, 0.0004666, 0.0004666, 0.0004666
38
+ 37, 0.54085, 0.34191, 1.0169, 0.89314, 0.89245, 0.9554, 0.82064, 0.64155, 0.42117, 1.0993, 0.00045953, 0.00045953, 0.00045953
39
+ 38, 0.53506, 0.33937, 1.0124, 0.89081, 0.87917, 0.95271, 0.81876, 0.64107, 0.42886, 1.1035, 0.00045246, 0.00045246, 0.00045246
40
+ 39, 0.53062, 0.33356, 1.0089, 0.88657, 0.88953, 0.95184, 0.81426, 0.6509, 0.43409, 1.1153, 0.00044539, 0.00044539, 0.00044539
41
+ 40, 0.52689, 0.32966, 1.0072, 0.89362, 0.88338, 0.95249, 0.81791, 0.64673, 0.4291, 1.1198, 0.00043832, 0.00043832, 0.00043832
42
+ 41, 0.52408, 0.32649, 1.0028, 0.88552, 0.88529, 0.95111, 0.81703, 0.64861, 0.43165, 1.1228, 0.00043126, 0.00043126, 0.00043126
43
+ 42, 0.5252, 0.32511, 1.0066, 0.88736, 0.88895, 0.95145, 0.81552, 0.64659, 0.43244, 1.124, 0.00042419, 0.00042419, 0.00042419
44
+ 43, 0.51939, 0.32051, 1.0059, 0.88194, 0.89484, 0.95141, 0.81732, 0.64509, 0.43411, 1.1273, 0.00041712, 0.00041712, 0.00041712
45
+ 44, 0.51098, 0.31266, 0.99569, 0.89008, 0.88298, 0.95083, 0.81759, 0.64848, 0.43339, 1.1227, 0.00041005, 0.00041005, 0.00041005
46
+ 45, 0.50485, 0.31026, 0.99248, 0.89461, 0.88186, 0.95207, 0.81912, 0.64555, 0.43178, 1.1338, 0.00040298, 0.00040298, 0.00040298
47
+ 46, 0.50615, 0.30759, 0.98689, 0.8873, 0.89305, 0.95292, 0.81959, 0.64841, 0.42735, 1.1042, 0.00039591, 0.00039591, 0.00039591
48
+ 47, 0.50272, 0.31924, 0.98227, 0.88198, 0.89628, 0.95109, 0.82126, 0.64114, 0.43393, 1.1086, 0.00038884, 0.00038884, 0.00038884
49
+ 48, 0.50001, 0.30136, 0.98048, 0.88278, 0.89641, 0.94915, 0.81644, 0.65012, 0.4337, 1.1142, 0.00038178, 0.00038178, 0.00038178
50
+ 49, 0.49453, 0.29995, 0.9799, 0.88535, 0.88928, 0.95033, 0.81844, 0.64621, 0.42774, 1.107, 0.00037471, 0.00037471, 0.00037471
51
+ 50, 0.49172, 0.29397, 0.97938, 0.88824, 0.89393, 0.95028, 0.81966, 0.64548, 0.43274, 1.1304, 0.00036764, 0.00036764, 0.00036764
52
+ 51, 0.49014, 0.29218, 0.97711, 0.88302, 0.89124, 0.9478, 0.81725, 0.6452, 0.44127, 1.1202, 0.00036057, 0.00036057, 0.00036057
53
+ 52, 0.48785, 0.29028, 0.97813, 0.88485, 0.89066, 0.95064, 0.82054, 0.64711, 0.43765, 1.125, 0.0003535, 0.0003535, 0.0003535
54
+ 53, 0.48511, 0.28543, 0.97982, 0.88927, 0.88141, 0.94757, 0.81581, 0.65014, 0.44866, 1.1364, 0.00034643, 0.00034643, 0.00034643
55
+ 54, 0.48639, 0.28376, 0.9781, 0.88107, 0.89128, 0.94571, 0.81346, 0.64738, 0.45234, 1.1397, 0.00033936, 0.00033936, 0.00033936
56
+ 55, 0.48103, 0.28373, 0.97373, 0.88352, 0.89007, 0.94661, 0.81613, 0.6461, 0.44657, 1.1346, 0.0003323, 0.0003323, 0.0003323
57
+ 56, 0.47911, 0.28268, 0.97563, 0.89215, 0.87708, 0.94698, 0.81853, 0.64453, 0.44309, 1.1316, 0.00032523, 0.00032523, 0.00032523
58
+ 57, 0.47422, 0.27632, 0.96895, 0.89161, 0.88032, 0.94862, 0.81922, 0.65344, 0.446, 1.1361, 0.00031816, 0.00031816, 0.00031816
59
+ 58, 0.46912, 0.27319, 0.95969, 0.89274, 0.88283, 0.94735, 0.81953, 0.64768, 0.44513, 1.1207, 0.00031109, 0.00031109, 0.00031109
60
+ 59, 0.46745, 0.26936, 0.9634, 0.89254, 0.87777, 0.94764, 0.81767, 0.64962, 0.45005, 1.1301, 0.00030402, 0.00030402, 0.00030402
61
+ 60, 0.46518, 0.26879, 0.96073, 0.89195, 0.87813, 0.94617, 0.81985, 0.64468, 0.45421, 1.1255, 0.00029695, 0.00029695, 0.00029695
62
+ 61, 0.45881, 0.2639, 0.95789, 0.89483, 0.87626, 0.9465, 0.81778, 0.65084, 0.45759, 1.143, 0.00028988, 0.00028988, 0.00028988
63
+ 62, 0.45787, 0.26317, 0.95716, 0.88492, 0.88917, 0.94543, 0.81556, 0.6498, 0.45652, 1.1419, 0.00028282, 0.00028282, 0.00028282
64
+ 63, 0.45834, 0.26266, 0.95527, 0.88021, 0.89333, 0.94645, 0.81984, 0.64906, 0.45269, 1.1397, 0.00027575, 0.00027575, 0.00027575
65
+ 64, 0.45216, 0.25809, 0.9538, 0.87779, 0.88887, 0.94412, 0.8164, 0.64756, 0.45908, 1.1257, 0.00026868, 0.00026868, 0.00026868
66
+ 65, 0.44982, 0.25788, 0.95367, 0.89311, 0.88156, 0.94665, 0.81893, 0.64867, 0.45136, 1.1429, 0.00026161, 0.00026161, 0.00026161
67
+ 66, 0.44735, 0.25349, 0.9513, 0.88847, 0.88293, 0.94435, 0.81589, 0.6461, 0.461, 1.1348, 0.00025454, 0.00025454, 0.00025454
68
+ 67, 0.44116, 0.2492, 0.94609, 0.88088, 0.88596, 0.94337, 0.81979, 0.64518, 0.46823, 1.1375, 0.00024747, 0.00024747, 0.00024747
69
+ 68, 0.44303, 0.25077, 0.95156, 0.89172, 0.87648, 0.9442, 0.8138, 0.64897, 0.4643, 1.1558, 0.0002404, 0.0002404, 0.0002404
70
+ 69, 0.43905, 0.2502, 0.94875, 0.88228, 0.88522, 0.94417, 0.81946, 0.64422, 0.47055, 1.1486, 0.00023334, 0.00023334, 0.00023334
71
+ 70, 0.44467, 0.25036, 0.95008, 0.88348, 0.88559, 0.94104, 0.81221, 0.64964, 0.46898, 1.1425, 0.00022627, 0.00022627, 0.00022627
72
+ 71, 0.44086, 0.25045, 0.95295, 0.8785, 0.88821, 0.94064, 0.81383, 0.64967, 0.47946, 1.157, 0.0002192, 0.0002192, 0.0002192
73
+ 72, 0.43276, 0.24393, 0.94684, 0.89026, 0.88298, 0.93933, 0.80935, 0.64479, 0.4671, 1.1533, 0.00021213, 0.00021213, 0.00021213
74
+ 73, 0.43067, 0.24636, 0.94848, 0.87999, 0.8893, 0.94365, 0.81937, 0.65137, 0.47165, 1.1626, 0.00020506, 0.00020506, 0.00020506
75
+ 74, 0.42886, 0.24114, 0.94406, 0.88841, 0.88462, 0.94427, 0.82353, 0.64303, 0.46437, 1.1555, 0.00019799, 0.00019799, 0.00019799
76
+ 75, 0.42605, 0.23835, 0.94246, 0.88665, 0.87783, 0.94209, 0.81916, 0.65203, 0.47848, 1.1581, 0.00019092, 0.00019092, 0.00019092
77
+ 76, 0.42221, 0.23495, 0.93687, 0.88412, 0.89003, 0.94339, 0.82262, 0.64351, 0.47217, 1.1514, 0.00018385, 0.00018385, 0.00018385
78
+ 77, 0.41984, 0.23369, 0.93023, 0.89821, 0.87263, 0.9425, 0.81934, 0.64896, 0.47503, 1.1528, 0.00017679, 0.00017679, 0.00017679
79
+ 78, 0.41404, 0.23192, 0.92643, 0.90069, 0.86999, 0.94191, 0.81943, 0.65001, 0.48703, 1.1389, 0.00016972, 0.00016972, 0.00016972
80
+ 79, 0.41662, 0.23102, 0.92967, 0.87905, 0.89609, 0.94126, 0.81547, 0.65076, 0.47305, 1.1452, 0.00016265, 0.00016265, 0.00016265
81
+ 80, 0.41104, 0.22812, 0.92858, 0.89224, 0.88247, 0.94117, 0.81795, 0.64771, 0.48129, 1.1548, 0.00015558, 0.00015558, 0.00015558
82
+ 81, 0.41088, 0.2286, 0.93086, 0.8756, 0.89268, 0.94036, 0.81567, 0.65413, 0.48547, 1.1636, 0.00014851, 0.00014851, 0.00014851
83
+ 82, 0.40513, 0.224, 0.92496, 0.89587, 0.87448, 0.93972, 0.8173, 0.64992, 0.48905, 1.1564, 0.00014144, 0.00014144, 0.00014144
84
+ 83, 0.40768, 0.22506, 0.92675, 0.89668, 0.87365, 0.93887, 0.81723, 0.65566, 0.48986, 1.1621, 0.00013437, 0.00013437, 0.00013437
85
+ 84, 0.40486, 0.22298, 0.92618, 0.8957, 0.871, 0.9389, 0.81741, 0.65429, 0.49256, 1.1667, 0.00012731, 0.00012731, 0.00012731
86
+ 85, 0.39801, 0.21908, 0.92681, 0.89443, 0.87511, 0.93928, 0.81911, 0.65308, 0.49653, 1.1722, 0.00012024, 0.00012024, 0.00012024
87
+ 86, 0.3981, 0.22274, 0.92915, 0.88799, 0.87922, 0.93943, 0.81836, 0.65031, 0.49286, 1.1772, 0.00011317, 0.00011317, 0.00011317
88
+ 87, 0.39819, 0.2184, 0.928, 0.88062, 0.88852, 0.94071, 0.82124, 0.64679, 0.48854, 1.1704, 0.0001061, 0.0001061, 0.0001061
89
+ 88, 0.39571, 0.21749, 0.92303, 0.88591, 0.8823, 0.94098, 0.82364, 0.64679, 0.49451, 1.1695, 9.9032e-05, 9.9032e-05, 9.9032e-05
90
+ 89, 0.39132, 0.21612, 0.92307, 0.89071, 0.882, 0.93962, 0.82143, 0.64666, 0.49898, 1.1722, 9.1963e-05, 9.1963e-05, 9.1963e-05
91
+ 90, 0.38807, 0.21152, 0.91906, 0.8906, 0.87775, 0.93909, 0.82032, 0.64789, 0.49923, 1.1703, 8.4895e-05, 8.4895e-05, 8.4895e-05
92
+ 91, 0.35887, 0.18424, 0.89309, 0.88797, 0.88036, 0.94086, 0.82045, 0.65183, 0.49429, 1.1745, 7.7826e-05, 7.7826e-05, 7.7826e-05
93
+ 92, 0.34715, 0.17659, 0.88599, 0.88536, 0.88127, 0.93948, 0.8201, 0.65388, 0.50866, 1.1744, 7.0757e-05, 7.0757e-05, 7.0757e-05
94
+ 93, 0.34718, 0.17481, 0.88696, 0.89188, 0.87551, 0.94053, 0.82077, 0.65426, 0.50314, 1.1734, 6.3689e-05, 6.3689e-05, 6.3689e-05
95
+ 94, 0.33975, 0.17158, 0.88026, 0.88468, 0.88002, 0.93968, 0.82001, 0.65572, 0.50799, 1.1724, 5.662e-05, 5.662e-05, 5.662e-05
96
+ 95, 0.33696, 0.16865, 0.87968, 0.88857, 0.87542, 0.93878, 0.82052, 0.65288, 0.51704, 1.1771, 4.9552e-05, 4.9552e-05, 4.9552e-05
97
+ 96, 0.33081, 0.16645, 0.87461, 0.88251, 0.88126, 0.93771, 0.82042, 0.652, 0.52149, 1.1795, 4.2483e-05, 4.2483e-05, 4.2483e-05
98
+ 97, 0.32963, 0.16705, 0.87492, 0.88451, 0.87971, 0.93827, 0.82018, 0.65346, 0.52063, 1.1817, 3.5414e-05, 3.5414e-05, 3.5414e-05
99
+ 98, 0.33067, 0.16518, 0.8781, 0.89326, 0.87442, 0.93848, 0.82125, 0.6519, 0.52133, 1.1839, 2.8346e-05, 2.8346e-05, 2.8346e-05
100
+ 99, 0.3285, 0.16244, 0.87243, 0.89253, 0.87087, 0.93791, 0.82094, 0.65154, 0.52191, 1.1799, 2.1277e-05, 2.1277e-05, 2.1277e-05
101
+ 100, 0.32309, 0.16224, 0.87133, 0.89661, 0.86902, 0.93702, 0.81975, 0.65359, 0.52343, 1.1812, 1.4209e-05, 1.4209e-05, 1.4209e-05
train2/results.png ADDED
train2/train_batch0.jpg ADDED
train2/train_batch1.jpg ADDED
train2/train_batch19440.jpg ADDED
train2/train_batch19441.jpg ADDED
train2/train_batch19442.jpg ADDED
train2/train_batch2.jpg ADDED
train2/val_batch0_labels.jpg ADDED
train2/val_batch0_pred.jpg ADDED
train2/val_batch1_labels.jpg ADDED
train2/val_batch1_pred.jpg ADDED
train2/val_batch2_labels.jpg ADDED