--- license: mit datasets: - kaist-audio-book language: - ko pipeline_tag: text-to-speech --- # SpeechT5 Text To Speech DON'T USE THIS. This is a model that failed to train. However, someone saw my code and asked me to share this model, so I put it up. ```py import torch from transformers import AutoTokenizer, SpeechT5HifiGan, SpeechT5ForTextToSpeech vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") tokenizer = AutoTokenizer.from_pretrained("Bingsu/speecht5_test") model = SpeechT5ForTextToSpeech.from_pretrained("Bingsu/speecht5_test") emb_url = "https://huggingface.co/Bingsu/speecht5_test/resolve/main/speaker_embedding.pt" emb_sd = torch.hub.load_state_dict_from_url(emb_url, map_location="cpu") emb = torch.nn.Embedding(model.config.num_speakers, model.config.speaker_embedding_dim) emb.load_state_dict(emb_sd) ``` ```py @torch.inference_mode() def gen(text: str, speaker_id: int = 0): inputs = tokenizer(text, return_tensors="pt") s_id = torch.tensor(speaker_id) speaker_embeddings = emb(s_id).unsqueeze(0) speech = model.generate_speech(inputs.input_ids, speaker_embeddings=speaker_embeddings, vocoder=vocoder) return speech.numpy() ```