update readme
Browse files
README.md
CHANGED
@@ -7,6 +7,7 @@ tags:
|
|
7 |
- sentence-transformers
|
8 |
---
|
9 |
|
|
|
10 |
<h1 align="center">FlagEmbedding</h1>
|
11 |
|
12 |
|
@@ -16,20 +17,22 @@ tags:
|
|
16 |
<a href=#usage>Usage</a> |
|
17 |
<a href="#evaluation">Evaluation</a> |
|
18 |
<a href="#train">Train</a> |
|
|
|
19 |
<a href="#license">License</a>
|
20 |
<p>
|
21 |
</h4>
|
22 |
|
23 |
-
|
24 |
|
25 |
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
26 |
|
27 |
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
28 |
-
And it also can be used in vector
|
29 |
|
30 |
************* 🌟**Updates**🌟 *************
|
|
|
31 |
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
32 |
-
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!**
|
33 |
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
34 |
|
35 |
|
@@ -37,36 +40,42 @@ And it also can be used in vector databases for LLMs.
|
|
37 |
|
38 |
`bge` is short for `BAAI general embedding`.
|
39 |
|
40 |
-
| Model | Language | Description | query instruction for retrieval |
|
41 |
|:-------------------------------|:--------:| :--------:| :--------:|
|
42 |
-
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English |
|
43 |
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | rank **2nd** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
44 |
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
45 |
-
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese |
|
46 |
| [BAAI/bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | Chinese | This model is trained without instruction, and rank **2nd** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | |
|
47 |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | a base-scale model but has similar ability with `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
48 |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
49 |
|
50 |
-
|
51 |
|
52 |
## Usage
|
53 |
|
54 |
-
|
|
|
|
|
|
|
55 |
```
|
56 |
pip install -U FlagEmbedding
|
57 |
```
|
58 |
-
|
59 |
|
60 |
```python
|
61 |
from FlagEmbedding import FlagModel
|
62 |
sentences = ["样例数据-1", "样例数据-2"]
|
63 |
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
68 |
queries = ['query_1', 'query_2']
|
69 |
-
passages = ["
|
70 |
q_embeddings = model.encode_queries(queries)
|
71 |
p_embeddings = model.encode(passages)
|
72 |
scores = q_embeddings @ p_embeddings.T
|
@@ -76,7 +85,7 @@ The value of argument `query_instruction_for_retrieval` see [Model List](https:/
|
|
76 |
FlagModel will use all available GPUs when encoding, please set `os.environ["CUDA_VISIBLE_DEVICES"]` to choose GPU.
|
77 |
|
78 |
|
79 |
-
|
80 |
|
81 |
Using this model also is easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
82 |
|
@@ -87,23 +96,43 @@ pip install -U sentence-transformers
|
|
87 |
from sentence_transformers import SentenceTransformer
|
88 |
sentences = ["样例数据-1", "样例数据-2"]
|
89 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
90 |
-
|
91 |
-
|
|
|
|
|
92 |
```
|
93 |
-
For retrieval task,
|
94 |
-
each query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
|
|
|
95 |
```python
|
96 |
from sentence_transformers import SentenceTransformer
|
97 |
-
queries = [
|
98 |
-
passages = ["
|
99 |
instruction = "为这个句子生成表示以用于检索相关文章:"
|
|
|
100 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
101 |
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
102 |
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
103 |
scores = q_embeddings @ p_embeddings.T
|
104 |
```
|
105 |
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
With transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of first token (i.e., [CLS]) as the sentence embedding.
|
109 |
|
@@ -112,13 +141,16 @@ from transformers import AutoTokenizer, AutoModel
|
|
112 |
import torch
|
113 |
# Sentences we want sentence embeddings for
|
114 |
sentences = ["样例数据-1", "样例数据-2"]
|
|
|
115 |
# Load model from HuggingFace Hub
|
116 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
117 |
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
|
|
118 |
# Tokenize sentences
|
119 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
120 |
-
# for retrieval task, add an instruction to query
|
121 |
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
|
|
122 |
# Compute token embeddings
|
123 |
with torch.no_grad():
|
124 |
model_output = model(**encoded_input)
|
@@ -160,7 +192,7 @@ More details and evaluation tools see our [scripts](https://github.com/FlagOpen/
|
|
160 |
|
161 |
|
162 |
- **C-MTEB**:
|
163 |
-
We create a benchmark C-MTEB for
|
164 |
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
165 |
|
166 |
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
@@ -188,7 +220,7 @@ and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagE
|
|
188 |
We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE),
|
189 |
which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)).
|
190 |
The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720.
|
191 |
-
In retromae, the mask ratio of encoder and decoder are 0.3,
|
192 |
We used the AdamW optimizer and the learning rate is 2e-5.
|
193 |
|
194 |
**Pre-training data**:
|
@@ -197,8 +229,7 @@ We used the AdamW optimizer and the learning rate is 2e-5.
|
|
197 |
- [wikipedia](https://huggingface.co/datasets/wikipedia)
|
198 |
- [msmarco](https://huggingface.co/datasets/Tevatron/msmarco-passage-corpus)
|
199 |
- Chinese:
|
200 |
-
-
|
201 |
-
- [baidu-baike](https://baike.baidu.com/)
|
202 |
|
203 |
|
204 |
**2. Finetune**
|
@@ -212,11 +243,11 @@ We trained our model on 48 A100(40G) GPUs with a large batch size of 32,768 (so
|
|
212 |
We used the AdamW optimizer and the learning rate is 1e-5.
|
213 |
The temperature for contrastive loss is 0.01.
|
214 |
|
215 |
-
|
216 |
-
For
|
217 |
-
For
|
218 |
-
In the evaluation, the instruction should be added for
|
219 |
-
|
220 |
|
221 |
The finetune script is accessible in this repository: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
|
222 |
You can easily finetune your model with it.
|
@@ -229,7 +260,13 @@ You can easily finetune your model with it.
|
|
229 |
|
230 |
**The data collection is to be released in the future.**
|
231 |
|
|
|
|
|
|
|
232 |
|
233 |
|
234 |
## License
|
235 |
-
FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
|
|
|
|
|
|
|
7 |
- sentence-transformers
|
8 |
---
|
9 |
|
10 |
+
|
11 |
<h1 align="center">FlagEmbedding</h1>
|
12 |
|
13 |
|
|
|
17 |
<a href=#usage>Usage</a> |
|
18 |
<a href="#evaluation">Evaluation</a> |
|
19 |
<a href="#train">Train</a> |
|
20 |
+
<a href="#contact">Contact</a> |
|
21 |
<a href="#license">License</a>
|
22 |
<p>
|
23 |
</h4>
|
24 |
|
25 |
+
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
26 |
|
27 |
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
28 |
|
29 |
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
30 |
+
And it also can be used in vector database for LLMs.
|
31 |
|
32 |
************* 🌟**Updates**🌟 *************
|
33 |
+
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [**this**](#using-langchain); C-MTEB **leaderboard** is [avaliable](https://huggingface.co/spaces/mteb/leaderboard).
|
34 |
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
35 |
+
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!**
|
36 |
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
37 |
|
38 |
|
|
|
40 |
|
41 |
`bge` is short for `BAAI general embedding`.
|
42 |
|
43 |
+
| Model | Language | Description | query instruction for retrieval\* |
|
44 |
|:-------------------------------|:--------:| :--------:| :--------:|
|
45 |
+
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
46 |
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | rank **2nd** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
47 |
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
48 |
+
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
|
49 |
| [BAAI/bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | Chinese | This model is trained without instruction, and rank **2nd** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | |
|
50 |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | a base-scale model but has similar ability with `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
51 |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
52 |
|
53 |
+
\*: If you need to search the **long** relevant passages to a **short** query (s2p retrieval task), you need to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** need to be added to passages.
|
54 |
|
55 |
## Usage
|
56 |
|
57 |
+
Here are some examples to use `bge` models with
|
58 |
+
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
|
59 |
+
|
60 |
+
#### Using FlagEmbedding
|
61 |
```
|
62 |
pip install -U FlagEmbedding
|
63 |
```
|
64 |
+
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
|
65 |
|
66 |
```python
|
67 |
from FlagEmbedding import FlagModel
|
68 |
sentences = ["样例数据-1", "样例数据-2"]
|
69 |
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
70 |
+
embeddings_1 = model.encode(sentences)
|
71 |
+
embeddings_2 = model.encode(sentences)
|
72 |
+
similarity = embeddings_1 @ embeddings_2.T
|
73 |
+
print(similarity)
|
74 |
+
|
75 |
+
# for s2p(short query to long passage) retrieval task, please use encode_queries() which will automatically add the instruction to each query
|
76 |
+
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
|
77 |
queries = ['query_1', 'query_2']
|
78 |
+
passages = ["样例文档-1", "样例文档-2"]
|
79 |
q_embeddings = model.encode_queries(queries)
|
80 |
p_embeddings = model.encode(passages)
|
81 |
scores = q_embeddings @ p_embeddings.T
|
|
|
85 |
FlagModel will use all available GPUs when encoding, please set `os.environ["CUDA_VISIBLE_DEVICES"]` to choose GPU.
|
86 |
|
87 |
|
88 |
+
#### Using Sentence-Transformers
|
89 |
|
90 |
Using this model also is easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
91 |
|
|
|
96 |
from sentence_transformers import SentenceTransformer
|
97 |
sentences = ["样例数据-1", "样例数据-2"]
|
98 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
99 |
+
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
|
100 |
+
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
|
101 |
+
similarity = embeddings_1 @ embeddings_2.T
|
102 |
+
print(similarity)
|
103 |
```
|
104 |
+
For s2p(short query to long passage) retrieval task,
|
105 |
+
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
|
106 |
+
But the instruction is not needed for passages.
|
107 |
```python
|
108 |
from sentence_transformers import SentenceTransformer
|
109 |
+
queries = ['query_1', 'query_2']
|
110 |
+
passages = ["样例文档-1", "样例文档-2"]
|
111 |
instruction = "为这个句子生成表示以用于检索相关文章:"
|
112 |
+
|
113 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
114 |
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
115 |
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
116 |
scores = q_embeddings @ p_embeddings.T
|
117 |
```
|
118 |
|
119 |
+
#### Using Langchain
|
120 |
+
|
121 |
+
You can use `bge` in langchain like this:
|
122 |
+
```python
|
123 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
124 |
+
model_name = "BAAI/bge-small-en"
|
125 |
+
model_kwargs = {'device': 'cuda'}
|
126 |
+
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
127 |
+
model_norm = HuggingFaceBgeEmbeddings(
|
128 |
+
model_name=model_name,
|
129 |
+
model_kwargs=model_kwargs,
|
130 |
+
encode_kwargs=encode_kwargs
|
131 |
+
)
|
132 |
+
```
|
133 |
+
|
134 |
+
|
135 |
+
#### Using HuggingFace Transformers
|
136 |
|
137 |
With transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of first token (i.e., [CLS]) as the sentence embedding.
|
138 |
|
|
|
141 |
import torch
|
142 |
# Sentences we want sentence embeddings for
|
143 |
sentences = ["样例数据-1", "样例数据-2"]
|
144 |
+
|
145 |
# Load model from HuggingFace Hub
|
146 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
147 |
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
148 |
+
|
149 |
# Tokenize sentences
|
150 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
151 |
+
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
|
152 |
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
153 |
+
|
154 |
# Compute token embeddings
|
155 |
with torch.no_grad():
|
156 |
model_output = model(**encoded_input)
|
|
|
192 |
|
193 |
|
194 |
- **C-MTEB**:
|
195 |
+
We create a benchmark C-MTEB for chinese text embedding which consists of 31 datasets from 6 tasks.
|
196 |
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
197 |
|
198 |
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
|
|
220 |
We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE),
|
221 |
which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)).
|
222 |
The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720.
|
223 |
+
In retromae, the mask ratio of encoder and decoder are 0.3, 0.5 respectively.
|
224 |
We used the AdamW optimizer and the learning rate is 2e-5.
|
225 |
|
226 |
**Pre-training data**:
|
|
|
229 |
- [wikipedia](https://huggingface.co/datasets/wikipedia)
|
230 |
- [msmarco](https://huggingface.co/datasets/Tevatron/msmarco-passage-corpus)
|
231 |
- Chinese:
|
232 |
+
- [wudao](https://github.com/BAAI-WuDao/Data)
|
|
|
233 |
|
234 |
|
235 |
**2. Finetune**
|
|
|
243 |
We used the AdamW optimizer and the learning rate is 1e-5.
|
244 |
The temperature for contrastive loss is 0.01.
|
245 |
|
246 |
+
Besides, we add instruction to the query for s2p(short query to long passage) retrieval task in the training (add nothing to passages).
|
247 |
+
For English, the instruction is `Represent this sentence for searching relevant passages: `;
|
248 |
+
For Chinese, the instruction is `为这个句子生成表示以用于检索相关文章:`.
|
249 |
+
In the evaluation, the instruction should be added for queries in retrieval task, not be added for other tasks.
|
250 |
+
Noted that the instruction is not needed for passages.
|
251 |
|
252 |
The finetune script is accessible in this repository: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
|
253 |
You can easily finetune your model with it.
|
|
|
260 |
|
261 |
**The data collection is to be released in the future.**
|
262 |
|
263 |
+
We will continually update the embedding models and training codes,
|
264 |
+
hoping to promote the development of the embedding model community.
|
265 |
+
|
266 |
|
267 |
|
268 |
## License
|
269 |
+
FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
270 |
+
|
271 |
+
|
272 |
+
|