Update README.md
Browse files
README.md
CHANGED
@@ -15,11 +15,11 @@ language:
|
|
15 |
<em>[Paper][Code][π€] (would be released soon)</em>
|
16 |
</p>
|
17 |
|
18 |
-
Infinity-Instruct-7M-
|
19 |
|
20 |
## **News**
|
21 |
|
22 |
-
- π₯π₯π₯[2024/08/02] We release the model weights of [InfInstruct-Llama3.1-70B
|
23 |
|
24 |
- π₯π₯π₯[2024/08/02] We release the 7M foundational dataset [Infinity-Instruct-7M](https://huggingface.co/datasets/BAAI/Infinity-Instruct).
|
25 |
|
@@ -39,7 +39,7 @@ Infinity-Instruct-7M-0729-Llama3.1-8B is an opensource supervised instruction tu
|
|
39 |
<img src="fig/trainingflow.png">
|
40 |
</p>
|
41 |
|
42 |
-
Infinity-Instruct-7M-
|
43 |
|
44 |
```bash
|
45 |
epoch: 3
|
@@ -71,7 +71,7 @@ Thanks to [FlagScale](https://github.com/FlagOpen/FlagScale), we could concatena
|
|
71 |
|
72 |
## **How to use**
|
73 |
|
74 |
-
Infinity-Instruct-7M-
|
75 |
|
76 |
```bash
|
77 |
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
|
@@ -90,11 +90,11 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorLis
|
|
90 |
import torch
|
91 |
device = "cuda" # the device to load the model onto
|
92 |
|
93 |
-
model = AutoModelForCausalLM.from_pretrained("BAAI/Infinity-Instruct-7M-
|
94 |
torch_dtype=torch.bfloat16,
|
95 |
device_map="auto"
|
96 |
)
|
97 |
-
tokenizer = AutoTokenizer.from_pretrained("BAAI/Infinity-Instruct-7M-
|
98 |
|
99 |
prompt = "Give me a short introduction to large language model."
|
100 |
messages = [
|
|
|
15 |
<em>[Paper][Code][π€] (would be released soon)</em>
|
16 |
</p>
|
17 |
|
18 |
+
Infinity-Instruct-7M-Gen-Llama3.1-8B is an opensource supervised instruction tuning model without reinforcement learning from human feedback (RLHF). This model is just finetuned on [Infinity-Instruct-7M and Infinity-Instruct-Gen](https://huggingface.co/datasets/BAAI/Infinity-Instruct) and showing favorable results on AlpacaEval 2.0 compared to GPT4.
|
19 |
|
20 |
## **News**
|
21 |
|
22 |
+
- π₯π₯π₯[2024/08/02] We release the model weights of [InfInstruct-Llama3.1-70B Gen](https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-70B), [InfInstruct-Llama3.1-8B Gen](https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B), [InfInstruct-Mistral-7B Gen](https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Mistral-7B).
|
23 |
|
24 |
- π₯π₯π₯[2024/08/02] We release the 7M foundational dataset [Infinity-Instruct-7M](https://huggingface.co/datasets/BAAI/Infinity-Instruct).
|
25 |
|
|
|
39 |
<img src="fig/trainingflow.png">
|
40 |
</p>
|
41 |
|
42 |
+
Infinity-Instruct-7M-Gen-Llama3.1-8B is tuned on Million-level instruction dataset [Infinity-Instruct](https://huggingface.co/datasets/BAAI/Infinity-Instruct). First, we apply the foundational dataset Infinity-Instruct-7M to improve the foundational ability (math & code) of Llama3-8B, and get the foundational instruct model Infinity-Instruct-7M-Llama3.1-8B. Then we finetune the Infinity-Instruct-7M-Llama3.1-8B to get the stronger chat model Infinity-Instruct-7M-Gen-Llama3.1-8B. Here is the training hyperparamers.
|
43 |
|
44 |
```bash
|
45 |
epoch: 3
|
|
|
71 |
|
72 |
## **How to use**
|
73 |
|
74 |
+
Infinity-Instruct-7M-Gen-Llama3.1-8B adopt the same chat template of [Llama3-8B-instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct):
|
75 |
|
76 |
```bash
|
77 |
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
|
|
|
90 |
import torch
|
91 |
device = "cuda" # the device to load the model onto
|
92 |
|
93 |
+
model = AutoModelForCausalLM.from_pretrained("BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B",
|
94 |
torch_dtype=torch.bfloat16,
|
95 |
device_map="auto"
|
96 |
)
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained("BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B")
|
98 |
|
99 |
prompt = "Give me a short introduction to large language model."
|
100 |
messages = [
|