BAAI
/

BoyaWu10 commited on
Commit
c8e5c12
1 Parent(s): f59ef8b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md CHANGED
@@ -1,3 +1,78 @@
1
  ---
 
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ inference: false
3
  license: apache-2.0
4
  ---
5
+
6
+ # Model Card
7
+
8
+ <p align="center">
9
+ <img src="./icon.png" alt="Logo" width="350">
10
+ </p>
11
+
12
+ 📖 [Technical report](https://arxiv.org/abs/2402.11530) | 🏠 [Code](https://github.com/BAAI-DCAI/Bunny) | 🐰 [Demo](https://wisemodel.cn/space/baai/Bunny)
13
+
14
+ Bunny is a family of lightweight but powerful multimodal models. It offers multiple plug-and-play vision encoders, like EVA-CLIP, SigLIP and language backbones, including Phi-1.5, StableLM-2, Qwen1.5-1.8B and Phi-2. To compensate for the decrease in model size, we construct more informative training data by curated selection from a broader data source. Remarkably, our Bunny-v1.0-3B model built upon SigLIP and Phi-2 outperforms the state-of-the-art MLLMs, not only in comparison with models of similar size but also against larger MLLM frameworks (7B), and even achieves performance on par with 13B models.
15
+
16
+ Bunny-v1_0-2B-zh employs [Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) as the language model and [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) as the vision encoder.
17
+
18
+ The model is pretrained on LAION-2M and finetuned on Bunny-695K.
19
+ More details about this model can be found in [GitHub](https://github.com/BAAI-DCAI/Bunny).
20
+
21
+ # Quickstart
22
+
23
+ Here we show a code snippet to show you how to use the model with transformers:
24
+
25
+ ```python
26
+ import torch
27
+ import transformers
28
+ from transformers import AutoModelForCausalLM, AutoTokenizer
29
+ from PIL import Image
30
+ import warnings
31
+
32
+ # disable some warnings
33
+ transformers.logging.set_verbosity_error()
34
+ transformers.logging.disable_progress_bar()
35
+ warnings.filterwarnings('ignore')
36
+
37
+ # set device
38
+ torch.set_default_device('cpu') # or 'cuda'
39
+
40
+ # create model
41
+ model = AutoModelForCausalLM.from_pretrained(
42
+ 'BAAI/Bunny-v1_0-2B-zh',
43
+ torch_dtype=torch.float16,
44
+ device_map='auto',
45
+ trust_remote_code=True)
46
+ tokenizer = AutoTokenizer.from_pretrained(
47
+ 'BAAI/Bunny-v1_0-2B-zh',
48
+ trust_remote_code=True)
49
+
50
+ # text prompt
51
+ prompt = 'Why is the image funny?'
52
+ text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:"
53
+ text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
54
+ input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
55
+
56
+ # image, sample images can be found in images folder
57
+ image = Image.open('example_2.png')
58
+ image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
59
+
60
+ # generate
61
+ output_ids = model.generate(
62
+ input_ids,
63
+ images=image_tensor,
64
+ max_new_tokens=100,
65
+ use_cache=True)[0]
66
+
67
+ print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
68
+ ```
69
+
70
+ Before running the snippet, you need to install the following dependencies:
71
+
72
+ ```shell
73
+ pip install torch transformers accelerate pillow
74
+ ```
75
+
76
+ # License
77
+ This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses.
78
+ The content of this project itself is licensed under the Apache license 2.0.