Update README.md
Browse files
README.md
CHANGED
@@ -9,7 +9,7 @@ license: apache-2.0
|
|
9 |
<img src="./icon.png" alt="Logo" width="350">
|
10 |
</p>
|
11 |
|
12 |
-
π [Technical report](https://arxiv.org/abs/2402.11530) | π [Code](https://github.com/BAAI-DCAI/Bunny) | π° [Demo](http://bunny.
|
13 |
|
14 |
Bunny is a family of lightweight but powerful multimodal models. It offers multiple plug-and-play vision encoders, like EVA-CLIP, SigLIP and language backbones, including Llama-3-8B, Phi-1.5, StableLM-2, Qwen1.5, MiniCPM and Phi-2. To compensate for the decrease in model size, we construct more informative training data by curated selection from a broader data source. Remarkably, our Bunny-v1.0-3B model built upon SigLIP and Phi-2 outperforms the state-of-the-art MLLMs, not only in comparison with models of similar size but also against larger MLLM frameworks (7B), and even achieves performance on par with 13B models.
|
15 |
|
|
|
9 |
<img src="./icon.png" alt="Logo" width="350">
|
10 |
</p>
|
11 |
|
12 |
+
π [Technical report](https://arxiv.org/abs/2402.11530) | π [Code](https://github.com/BAAI-DCAI/Bunny) | π° [Demo](http://bunny.baai.ac.cn)
|
13 |
|
14 |
Bunny is a family of lightweight but powerful multimodal models. It offers multiple plug-and-play vision encoders, like EVA-CLIP, SigLIP and language backbones, including Llama-3-8B, Phi-1.5, StableLM-2, Qwen1.5, MiniCPM and Phi-2. To compensate for the decrease in model size, we construct more informative training data by curated selection from a broader data source. Remarkably, our Bunny-v1.0-3B model built upon SigLIP and Phi-2 outperforms the state-of-the-art MLLMs, not only in comparison with models of similar size but also against larger MLLM frameworks (7B), and even achieves performance on par with 13B models.
|
15 |
|