KonradSzafer commited on
Commit
99c4e25
1 Parent(s): 8914c00

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -143
README.md CHANGED
@@ -28,7 +28,7 @@ For details on MOMENT models, training data, and experimental results, please re
28
 
29
  Install the package using:
30
  ```bash
31
- pip install git+https://github.com/moment-timeseries-foundation-model/moment-test.git
32
  ```
33
 
34
  To load the pre-trained model for one of the tasks, use one of the following code snippets:
@@ -100,110 +100,6 @@ model = MOMENTPipeline.from_pretrained(
100
  - **Paper:** https://arxiv.org/abs/2402.03885
101
  - **Demo:** https://github.com/moment-timeseries-foundation-model/
102
 
103
- ## Uses
104
-
105
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
106
-
107
- ### Direct Use
108
-
109
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
110
-
111
- [More Information Needed]
112
-
113
- ### Downstream Use [optional]
114
-
115
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
116
-
117
- [More Information Needed]
118
-
119
- ### Out-of-Scope Use
120
-
121
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
122
-
123
- [More Information Needed]
124
-
125
- ## Bias, Risks, and Limitations
126
-
127
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
128
-
129
- [More Information Needed]
130
-
131
- ### Recommendations
132
-
133
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
134
-
135
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
136
-
137
- ## How to Get Started with the Model
138
-
139
- Use the code below to get started with the model.
140
-
141
- [More Information Needed]
142
-
143
- ## Training Details
144
-
145
- ### Training Data
146
-
147
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
148
-
149
- [More Information Needed]
150
-
151
- ### Training Procedure
152
-
153
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
154
-
155
- #### Preprocessing [optional]
156
-
157
- [More Information Needed]
158
-
159
-
160
- #### Training Hyperparameters
161
-
162
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
163
-
164
- #### Speeds, Sizes, Times [optional]
165
-
166
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
167
-
168
- [More Information Needed]
169
-
170
- ## Evaluation
171
-
172
- <!-- This section describes the evaluation protocols and provides the results. -->
173
-
174
- ### Testing Data, Factors & Metrics
175
-
176
- #### Testing Data
177
-
178
- <!-- This should link to a Dataset Card if possible. -->
179
-
180
- [More Information Needed]
181
-
182
- #### Factors
183
-
184
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
185
-
186
- [More Information Needed]
187
-
188
- #### Metrics
189
-
190
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
191
-
192
- [More Information Needed]
193
-
194
- ### Results
195
-
196
- [More Information Needed]
197
-
198
- #### Summary
199
-
200
-
201
-
202
- ## Model Examination [optional]
203
-
204
- <!-- Relevant interpretability work for the model goes here -->
205
-
206
- [More Information Needed]
207
 
208
  ## Environmental Impact
209
 
@@ -218,23 +114,11 @@ We use the Total Graphics Power (TGP) to calculate the total power consumed for
218
  - **Compute Region:** Pittsburgh, USA
219
  - **Carbon Emission (tCO2eq):**
220
 
221
- ## Technical Specifications [optional]
222
-
223
- ### Model Architecture and Objective
224
-
225
- [More Information Needed]
226
-
227
- ### Compute Infrastructure
228
-
229
  #### Hardware
230
 
231
  All models were trained and evaluated on a computing cluster consisting of 128 AMD EPYC 7502 CPUs, 503 GB of RAM, and 8 NVIDIA RTX A6000 GPUs each with 49 GiB RAM. All MOMENT variants were trained on a single A6000 GPU (with any data or model parallelism).
232
 
233
- #### Software
234
-
235
-
236
-
237
- ## Citation [optional]
238
 
239
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
240
 
@@ -242,34 +126,15 @@ All models were trained and evaluated on a computing cluster consisting of 128 A
242
  If you use MOMENT please cite our paper:
243
 
244
  ```bibtex
245
-
246
- @article{
247
- goswami2024moment,
248
- title={{MOMENT: A Family of Open Time-series Foundation Models}},
249
- author={Goswami, Mononito and Szafer, Konrad and Choudhry, Arjun and Cai, Yifu and Li, Shuo and Dubrawski, Artur},
250
- journal={arXiv preprint arXiv:2402.03885},
251
- year={2024},
252
- }
253
  ```
254
 
255
-
256
  **APA:**
257
 
258
  Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., & Dubrawski, A. (2024).
259
  MOMENT: A Family of Open Time-series Foundation Models. arXiv preprint arXiv:2402.03885.
260
-
261
- ## Glossary [optional]
262
-
263
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
264
-
265
- [More Information Needed]
266
-
267
- ## More Information [optional]
268
-
269
- [More Information Needed]
270
-
271
- ## Model Card Authors [optional]
272
-
273
- [More Information Needed]
274
-
275
- ## Model Card Contact
 
28
 
29
  Install the package using:
30
  ```bash
31
+ pip install git+https://github.com/moment-timeseries-foundation-model/moment.git
32
  ```
33
 
34
  To load the pre-trained model for one of the tasks, use one of the following code snippets:
 
100
  - **Paper:** https://arxiv.org/abs/2402.03885
101
  - **Demo:** https://github.com/moment-timeseries-foundation-model/
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
  ## Environmental Impact
105
 
 
114
  - **Compute Region:** Pittsburgh, USA
115
  - **Carbon Emission (tCO2eq):**
116
 
 
 
 
 
 
 
 
 
117
  #### Hardware
118
 
119
  All models were trained and evaluated on a computing cluster consisting of 128 AMD EPYC 7502 CPUs, 503 GB of RAM, and 8 NVIDIA RTX A6000 GPUs each with 49 GiB RAM. All MOMENT variants were trained on a single A6000 GPU (with any data or model parallelism).
120
 
121
+ ## Citation
 
 
 
 
122
 
123
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
124
 
 
126
  If you use MOMENT please cite our paper:
127
 
128
  ```bibtex
129
+ @inproceedings{goswami2024moment,
130
+ title={MOMENT: A Family of Open Time-series Foundation Models},
131
+ author={Mononito Goswami and Konrad Szafer and Arjun Choudhry and Yifu Cai and Shuo Li and Artur Dubrawski},
132
+ booktitle={ICML},
133
+ year={2024}
134
+ }
 
 
135
  ```
136
 
 
137
  **APA:**
138
 
139
  Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., & Dubrawski, A. (2024).
140
  MOMENT: A Family of Open Time-series Foundation Models. arXiv preprint arXiv:2402.03885.