MononitoGoswami commited on
Commit
30f05b2
1 Parent(s): 5aafc6f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -1
README.md CHANGED
@@ -27,11 +27,18 @@ For details on MOMENT models, training data, and experimental results, please re
27
 
28
  # Usage
29
 
30
- Install the package using:
 
 
 
 
 
 
31
  ```bash
32
  pip install git+https://github.com/moment-timeseries-foundation-model/moment.git
33
  ```
34
 
 
35
  To load the pre-trained model for one of the tasks, use one of the following code snippets:
36
 
37
  **Forecasting**
@@ -84,6 +91,15 @@ model = MOMENTPipeline.from_pretrained(
84
  )
85
  ```
86
 
 
 
 
 
 
 
 
 
 
87
  ## Model Details
88
 
89
  ### Model Description
 
27
 
28
  # Usage
29
 
30
+ **Recommended Python Version:** Python 3.11 (support for additional versions is expected soon).
31
+
32
+ You can install the `momentfm` package using pip:
33
+ ```bash
34
+ pip install momentfm
35
+ ```
36
+ Alternatively, to install the latest version directly from the GitHub repository:
37
  ```bash
38
  pip install git+https://github.com/moment-timeseries-foundation-model/moment.git
39
  ```
40
 
41
+
42
  To load the pre-trained model for one of the tasks, use one of the following code snippets:
43
 
44
  **Forecasting**
 
91
  )
92
  ```
93
 
94
+ ### Tutorials
95
+ Here is the list of tutorials and reproducibile experiments to get started with MOMENT for various tasks:
96
+ - [Forecasting](https://github.com/moment-timeseries-foundation-model/moment/blob/main/tutorials/forecasting.ipynb)
97
+ - [Classification](https://github.com/moment-timeseries-foundation-model/moment/blob/main/tutorials/classification.ipynb)
98
+ - [Anomaly Detection](https://github.com/moment-timeseries-foundation-model/moment/blob/main/tutorials/anomaly_detection.ipynb)
99
+ - [Imputation](https://github.com/moment-timeseries-foundation-model/moment/blob/main/tutorials/imputation.ipynb)
100
+ - [Representation Learning](https://github.com/moment-timeseries-foundation-model/moment/blob/main/tutorials/representation_learning.ipynb)
101
+ - [Real-world Electrocardiogram (ECG) Case Study](https://github.com/moment-timeseries-foundation-model/moment/blob/main/tutorials/ptbxl_classification.ipynb) -- This tutorial also shows how to fine-tune MOMENT for a real-world ECG classification problem, performing training and inference on multiple GPUs and parameter efficient fine-tuning (PEFT).
102
+
103
  ## Model Details
104
 
105
  ### Model Description