File size: 31,285 Bytes
c50fe14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 |
"""
Full definition of a RWKV Language Model, all of it in this single file.
References:
1) the official RWKV PyTorch implementation released by Bo Peng:
https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v4neo/src/model.py
2) huggingface/transformers PyTorch implementation:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/rwkv/modeling_rwkv.py
"""
import math,time
import os
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
PREV_X_TIME = 0
NUM_STATE = 1
DEN_STATE = 2
MAX_STATE = 3
PREV_X_CHANNEL = 4
# copied from nanoGPT
class LayerNorm(nn.Module):
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
def __init__(self, ndim, bias):
super().__init__()
self.weight = nn.Parameter(torch.ones(ndim))
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
def forward(self, input):
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
# learn from GPT-4
from unittest.mock import patch
class CudaNotAvailable:
def __enter__(self):
self.patcher = patch("torch.cuda.is_available", return_value=False)
self.patcher.start()
def __exit__(self, exc_type, exc_value, traceback):
self.patcher.stop()
# https://github.com/BlinkDL/RWKV-LM/blob/cca1b5e8e597cf40675882bb10b46287c844e35c/RWKV-v4/src/model.py#L21
class L2Wrap(torch.autograd.Function):
@staticmethod
def forward(ctx, loss, y):
ctx.save_for_backward(y)
return loss
@staticmethod
def backward(ctx, grad_output):
y = ctx.saved_tensors[0]
# to encourage the logits to be close to 0
factor = 1e-4 / (y.shape[0] * y.shape[1])
maxx, ids = torch.max(y, -1, keepdim=True)
gy = torch.zeros_like(y)
gy.scatter_(-1, ids, maxx * factor)
return (grad_output, gy)
class ChannelMixing(nn.Module):
def __init__(self,config,layer_id):
super().__init__()
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.layer_id = layer_id
n_embd = config.n_embd
intermediate_size = (
config.intermediate_size if config.intermediate_size is not None else 4 * n_embd
)
## Learnable Matrix
self.key_proj = nn.Linear(n_embd,intermediate_size,bias=False)
self.value_proj = nn.Linear(intermediate_size,n_embd,bias=False)
self.receptance_proj = nn.Linear(n_embd,n_embd,bias=False)
## Learnable Vector
self.time_mix_key = nn.Parameter(torch.empty(1, 1, n_embd))
self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, n_embd))
def forward(self,x,state=None):
# x = (Batch,Time,Channel)
if state is not None:
prev_x = state[self.layer_id,:,[PREV_X_CHANNEL],:]
state[self.layer_id,:,[PREV_X_CHANNEL],:] = x
else:
prev_x = self.time_shift(x)
## R
receptance = x * self.time_mix_receptance + prev_x * (1 - self.time_mix_receptance)
receptance = self.receptance_proj(receptance)
receptance = F.sigmoid(receptance)
# K
key = x * self.time_mix_key + prev_x * (1 - self.time_mix_key)
key = self.key_proj(key)
# V
value = self.value_proj(torch.square(torch.relu(key)))
## output
out = receptance * value
return out, state
class TimeMixing(nn.Module):
def __init__(self,config,layer_id):
super().__init__()
self.config = config
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.layer_id = layer_id
n_embd = config.n_embd
attn_sz = n_embd
## learnable matrix
self.key_proj = nn.Linear(n_embd, attn_sz, bias=False)
self.value_proj = nn.Linear(n_embd, attn_sz, bias=False)
self.receptance_proj = nn.Linear(n_embd, attn_sz, bias=False)
self.output_proj = nn.Linear(attn_sz, n_embd, bias=False)
## learnable vector
self.time_decay = nn.Parameter(torch.empty(attn_sz))
self.time_first = nn.Parameter(torch.empty(attn_sz))
self.time_mix_key = nn.Parameter(torch.empty(1, 1, n_embd))
self.time_mix_value = nn.Parameter(torch.empty(1, 1, n_embd))
self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, n_embd))
def forward(self,x,state=None):
# x = (Batch,Time,Channel)
if state is not None:
prev_x = state[self.layer_id,:,[PREV_X_TIME],:]
state[self.layer_id,:,[PREV_X_TIME],:] = x
else:
prev_x = self.time_shift(x)
# K
key = x * self.time_mix_key + prev_x * (1 - self.time_mix_key)
key = self.key_proj(key)
# V
value = x * self.time_mix_value + prev_x * (1 - self.time_mix_value)
value = self.value_proj(value)
# R
receptance = x * self.time_mix_receptance + prev_x * (1 - self.time_mix_receptance)
receptance = self.receptance_proj(receptance)
receptance = F.sigmoid(receptance)
# WKV
wkv, state = self.wkv_function(key,value,use_customized_cuda_kernel=self.config.use_customized_cuda_kernel,state=state)
# RWKV
rwkv = receptance * wkv
rwkv = self.output_proj(rwkv)
return rwkv, state
def wkv_function(self,key,value,use_customized_cuda_kernel,state=None):
## essentially, this customized cuda kernel delivers a faster for loop across time steps
## only for training and evaluating loss and ppl
if state is None and use_customized_cuda_kernel:
B, T, C = key.size()
return WKVKernel.apply(B, T, C, self.time_decay, self.time_first, key, value), None
## raw wkv function (from Huggingface Implementation)
## only for generation (because using raw pytorch for loop to train the model would be super super slow)
else:
_, seq_length, _ = key.size()
output = torch.zeros_like(key)
debug_mode = False
if state is None:
## only for debug purpose when use_customized_cuda_kernel=False and state is None
debug_mode = True
num_state = torch.zeros_like(key[:, 0], dtype=torch.float32)
den_state = torch.zeros_like(key[:, 0], dtype=torch.float32)
max_state = torch.zeros_like(key[:, 0], dtype=torch.float32) - 1e38
else:
num_state = state[self.layer_id,:,NUM_STATE,:]
den_state = state[self.layer_id,:,DEN_STATE,:]
max_state = state[self.layer_id,:,MAX_STATE,:]
time_decay = -torch.exp(self.time_decay)
for current_index in range(seq_length):
current_key = key[:, current_index].float()
current_value = value[:, current_index]
# wkv computation at time t
max_for_output = torch.maximum(max_state, current_key + self.time_first)
e1 = torch.exp(max_state - max_for_output)
e2 = torch.exp(current_key + self.time_first - max_for_output)
numerator = e1 * num_state + e2 * current_value
denominator = e1 * den_state + e2
output[:, current_index] = (numerator / denominator).to(output.dtype)
# Update state for next iteration
max_for_state = torch.maximum(max_state + time_decay, current_key)
e1 = torch.exp(max_state + time_decay - max_for_state)
e2 = torch.exp(current_key - max_for_state)
num_state = e1 * num_state + e2 * current_value
den_state = e1 * den_state + e2
max_state = max_for_state
if debug_mode:
return output, None
else:
state[self.layer_id,:,NUM_STATE,:] = num_state
state[self.layer_id,:,DEN_STATE,:] = den_state
state[self.layer_id,:,MAX_STATE,:] = max_state
return output, state
class Block(nn.Module):
def __init__(self, config,layer_id):
super().__init__()
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
self.attn = TimeMixing(config,layer_id)
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
self.ffn = ChannelMixing(config,layer_id)
def forward(self, x, state = None):
# state: [batch_size, 5 , n_embd]
# time mixing
residual = x
x,state = self.attn(self.ln_1(x),state=state)
x = x + residual
# channel mixing
residual = x
x, state = self.ffn(self.ln_2(x),state=state)
x = x + residual
return x, state
@dataclass
class RWKVConfig:
block_size: int = 1024 # same as nanoGPT
vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
n_layer: int = 12
n_embd: int = 768
bias: bool = True # bias in LayerNorms, in RWKV, all bias in Linear is False
intermediate_size: int = None # intermediate_size in channel-mixing
use_customized_cuda_kernel: bool = True
dtype: str = "float16" ## bfloat16 is not supported in V100
rescale_every: int = 6 ## mysterious trick, only applies when inference
class RWKV(nn.Module):
def __init__(self, config,lr_init=0.0008):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.lr_init = lr_init ## used to initialize embedding parameters
self.rwkv = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
ln_p = LayerNorm(config.n_embd, bias=config.bias),
h = nn.ModuleList([Block(config,layer_id) for layer_id in range(config.n_layer)]),
ln_f = LayerNorm(config.n_embd, bias=config.bias),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.apply(self._init_weights)
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
if self.config.use_customized_cuda_kernel:
## load customized cuda kernel
self.load_cuda_kernel(config.dtype)
def get_num_params(self, non_embedding=True):
"""
Return the number of parameters in the model.
For non-embedding count (default), the token embeddings get subtracted.
"""
n_params = sum(p.numel() for p in self.parameters())
if non_embedding:
n_params -= self.rwkv.wte.weight.numel()
return n_params
def _init_weights(self, module):
## initialize Vector Parameters in TimeMixing
if isinstance(module,TimeMixing):
layer_id = module.layer_id
n_layer = self.config.n_layer
n_embd = self.config.n_embd
attn_sz = n_embd
with torch.no_grad():
ratio_0_to_1 = layer_id / (n_layer - 1) # 0 to 1
ratio_1_to_almost0 = 1.0 - (layer_id / n_layer) # 1 to ~0
ddd = torch.ones(1, 1, n_embd)
for i in range(n_embd):
ddd[0, 0, i] = i / n_embd
decay_speed = torch.ones(attn_sz)
for h in range(attn_sz):
decay_speed[h] = -5 + 8 * (h / (attn_sz - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
module.time_decay = nn.Parameter(decay_speed)
zigzag = torch.tensor([(i + 1) % 3 - 1 for i in range(attn_sz)]) * 0.5
module.time_first = nn.Parameter(torch.ones(attn_sz) * math.log(0.3) + zigzag)
module.time_mix_key = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
module.time_mix_value = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
module.time_mix_receptance = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
## initialize Vector Parameters in ChannelMixing
elif isinstance(module,ChannelMixing):
layer_id = module.layer_id
n_layer = self.config.n_layer
n_embd = self.config.n_embd
with torch.no_grad(): # fancy init of time_mix
ratio_1_to_almost0 = 1.0 - (layer_id / n_layer) # 1 to ~0
ddd = torch.ones(1, 1, n_embd)
for i in range(n_embd):
ddd[0, 0, i] = i / n_embd
module.time_mix_key = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
module.time_mix_receptance = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
## initialize Linear Layer and Embedding Layer
elif isinstance(module,(nn.Embedding,nn.Linear)):
weight = module.weight
shape = weight.shape
gain = 1.0
scale = 1.0
## get the current name of the parameters
for _name,_parameters in self.named_parameters():
if id(_parameters) == id(weight):
current_module_name = _name
# print(current_module_name)
## Embedding
if isinstance(module, nn.Embedding):
gain = math.sqrt(max(shape[0], shape[1]))
scale = -1 * self.lr_init
## Linear
elif isinstance(module,nn.Linear):
if shape[0] > shape[1]:
gain = math.sqrt(shape[0] / shape[1])
## initialize some matrix to be all ZEROS
for name in [".attn.key_proj.", ".attn.receptance_proj.", ".attn.output_proj.",
".ffn.value_proj.", ".ffn.receptance_proj."]:
if name in current_module_name:
scale = 0
if current_module_name == 'lm_head.weight':
scale = 0.5
if scale == 0:
nn.init.zeros_(weight)
elif scale < 0:
nn.init.uniform_(weight, a=scale, b=-scale)
else:
nn.init.orthogonal_(weight, gain=gain * scale)
def forward(self, idx, targets=None, state=None, return_state=False):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
x = self.rwkv.wte(idx)
x = self.rwkv.ln_p(x)
# x = self.rwkv.drop(x)
for block_idx,block in enumerate(self.rwkv.h):
x, state = block(x,state)
if state is not None: ## in generation mode
if (
self.config.rescale_every > 0
and (block_idx + 1) % self.config.rescale_every == 0
):
x = x/2
x = self.rwkv.ln_f(x)
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.lm_head(x)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
if self.training:
loss = L2Wrap.apply(loss,logits) # from RWKV-LM
else:
# inference-time mini-optimization: only forward the lm_head on the very last position
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
loss = None
if return_state:
return logits, loss, state
else:
return logits, loss
def crop_block_size(self, block_size):
assert block_size <= self.config.block_size
self.config.block_size = block_size
@classmethod
def from_pretrained(cls, model_type,use_customized_cuda_kernel=True,dtype="float16"):
assert model_type in {
'RWKV/rwkv-4-169m-pile',
"RWKV/rwkv-4-430m-pile",
"RWKV/rwkv-4-1b5-pile",
"RWKV/rwkv-4-3b-pile",
"RWKV/rwkv-4-7b-pile",
"RWKV/rwkv-raven-7b",
"RWKV/rwkv-raven-1b5",
"RWKV/rwkv-raven-3b",
"RWKV/rwkv-4-14b-pile",
}
print("loading weights from pretrained RWKV: %s" % model_type)
# init a huggingface/transformers model
from transformers import RwkvForCausalLM,RwkvConfig
hf_config = RwkvConfig.from_pretrained(model_type)
with CudaNotAvailable(): ## avoid HF load kernel
hf_model = RwkvForCausalLM.from_pretrained(model_type)
# create a from-scratch initialized RWKV model
config = {
"vocab_size":50277,
"n_layer":hf_config.num_hidden_layers,
"n_embd":hf_config.hidden_size,
"intermediate_size":hf_config.intermediate_size,
"use_customized_cuda_kernel":use_customized_cuda_kernel,
"dtype": dtype,
}
config = RWKVConfig(**config)
model = RWKV(config)
num_layers = config.n_layer
## create mapping from the parameter name in RWKV to that of HF-RWKV
mapping = {
"rwkv.wte.weight":"rwkv.embeddings.weight",
"rwkv.ln_p.weight":"rwkv.blocks.0.pre_ln.weight",
"rwkv.ln_p.bias":"rwkv.blocks.0.pre_ln.bias",
"rwkv.ln_f.weight":"rwkv.ln_out.weight",
"rwkv.ln_f.bias":"rwkv.ln_out.bias",
"lm_head.weight":"head.weight",
**{f"rwkv.h.{layer_id}.ln_{norm_id}.weight":f"rwkv.blocks.{layer_id}.ln{norm_id}.weight" for layer_id in range(num_layers) for norm_id in [1,2]},
**{f"rwkv.h.{layer_id}.ln_{norm_id}.bias":f"rwkv.blocks.{layer_id}.ln{norm_id}.bias" for layer_id in range(num_layers) for norm_id in [1,2]},
**{f"rwkv.h.{layer_id}.attn.{_type}":f"rwkv.blocks.{layer_id}.attention.{_type}" for layer_id in range(num_layers) for _type in ["time_decay","time_first",'time_mix_key','time_mix_value',"time_mix_receptance"]},
**{f"rwkv.h.{layer_id}.attn.{_type}_proj.weight":f"rwkv.blocks.{layer_id}.attention.{_type}.weight" for layer_id in range(num_layers) for _type in ["key","value",'receptance',"output"]},
**{f"rwkv.h.{layer_id}.ffn.{_type}":f"rwkv.blocks.{layer_id}.feed_forward.{_type}" for layer_id in range(num_layers) for _type in ['time_mix_key',"time_mix_receptance"]},
**{f"rwkv.h.{layer_id}.ffn.{_type}_proj.weight":f"rwkv.blocks.{layer_id}.feed_forward.{_type}.weight" for layer_id in range(num_layers) for _type in ["key","value",'receptance']},
}
mapped_set = [mapping[x] for x in model.state_dict().keys()]
assert set(mapped_set) == set(hf_model.state_dict().keys())
sd = model.state_dict()
hf_sd = hf_model.state_dict()
for k1,k2 in mapping.items():
assert sd[k1].shape == hf_sd[k2].shape,(k1,k2)
sd[k1].copy_(hf_sd[k2])
return model
# def configure_optimizers(self,weight_decay,learning_rate,betas,device_type):
# # lr_1x = set()
# # lr_2x = set()
# # lr_3x = set()
# # for n, p in self.named_parameters():
# # if "time_mix" in n:lr_1x.add(n)
# # elif "time_decay" in n:lr_2x.add(n)
# # elif "time_first" in n:lr_3x.add(n)
# # else:lr_1x.add(n)
# # lr_1x = sorted(list(lr_1x))
# # lr_2x = sorted(list(lr_2x))
# # lr_3x = sorted(list(lr_3x))
# # param_dict = {n: p for n, p in self.named_parameters()}
# # optim_groups = [
# # {"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
# # {"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
# # {"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
# # ]
# optim_groups = [{"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},]
# fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
# use_fused = fused_available and device_type == 'cuda'
# extra_args = dict(fused=True) if use_fused else dict()
# optimizer = torch.optim.Adam(optim_groups, lr=learning_rate, betas=betas, eps=1e-8, weight_decay=weight_decay,amsgrad=False,**extra_args)
# return optimizer
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == 'cuda'
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
print(f"using fused AdamW: {use_fused}")
return optimizer
def estimate_mfu(self, fwdbwd_per_iter, dt):
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
# first estimate the number of flops we do per iteration.
# see RWKV paper Appendix C as ref: https://arxiv.org/abs/2305.13048
cfg = self.config
L, V, D = cfg.n_layer, cfg.vocab_size, cfg.n_embd
# Note there is a typo in the RWKV paper. Forward pass is 2*fn, forward
# and backward is 6*fn.
flops_per_token = 2*(V*D + 13*(V**2)*L)
flops_per_fwdbwd = 3*flops_per_token
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
# express our flops throughput as ratio of A100 bfloat16 peak flops
flops_achieved = flops_per_iter * (1.0/dt) # per second
# https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
if cfg.dtype == 'bfloat16':
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
elif cfg.dtype == 'float16':
flops_promised = 312e12 # A100 GPU float16 peak flops is 312 TFLOPS
else: #dtype == float32
flops_promised = 19.5e12 # A100 GPU float32 peak flops is 19.5 TFLOPS
mfu = flops_achieved / flops_promised
return mfu
def init_state(self,batch_size,device):
n_state = len([PREV_X_TIME,NUM_STATE,DEN_STATE,MAX_STATE,PREV_X_CHANNEL])
state = torch.zeros(
(self.config.n_layer,batch_size,n_state,self.config.n_embd),
dtype=torch.float32, device=device,
)
state[:,:,MAX_STATE,:] -= 1e30
return state
def scale_parameters(self):
if self.config.rescale_every > 0:
with torch.no_grad():
for block_id,block in enumerate(self.rwkv.h):
block.attn.output_proj.weight.div_(2 ** int(block_id // self.config.rescale_every))
block.ffn.value_proj.weight.div_(2 ** int(block_id // self.config.rescale_every))
self.scaled = True
def unscale_parameters(self):
if self.config.rescale_every > 0 and self.scaled:
with torch.no_grad():
for block_id,block in enumerate(self.rwkv.h):
block.attn.output_proj.weight.mul_(2 ** int(block_id // self.config.rescale_every))
block.ffn.value_proj.weight.mul_(2 ** int(block_id // self.config.rescale_every))
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
idx: (batch_size,seq_len)
"""
batch_size,seq_len = idx.shape
state = self.init_state(batch_size,idx.device)
for seq_id in range(seq_len):
logits, _, state = self(idx[:,[seq_id]], state = state, return_state=True)
for _ in range(max_new_tokens):
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
logits, _, state = self(idx_next, state=state, return_state=True)
return idx
def load_cuda_kernel(self,dtype):
from torch.utils.cpp_extension import load
T_MAX = self.config.block_size
RWKV_FLOAT_MODE = dtype
if RWKV_FLOAT_MODE == "bfloat16":
wkv_cuda = load(name=f"wkv_{T_MAX}_bf16", sources=["cuda/wkv_op_bf16.cpp", "cuda/wkv_cuda_bf16.cu"], verbose=True, extra_cuda_cflags=["-t 4", "-std=c++17", "-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
ctx.B = B
ctx.T = T
ctx.C = C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w = -torch.exp(w.float().contiguous())
u = u.contiguous().bfloat16()
k = k.contiguous()
v = v.contiguous()
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
ctx.save_for_backward(w, u, k, v, y)
return y
@staticmethod
def backward(ctx, gy):
B = ctx.B
T = ctx.T
C = ctx.C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w, u, k, v, y = ctx.saved_tensors
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
return (None, None, None, gw, gu, gk, gv)
else:
wkv_cuda = load(name=f"wkv_{T_MAX}", sources=["cuda/wkv_op.cpp", "cuda/wkv_cuda.cu"], verbose=True, extra_cuda_cflags=["-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
ctx.B = B
ctx.T = T
ctx.C = C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
if "32" in RWKV_FLOAT_MODE:
w = -torch.exp(w.contiguous())
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
else:
w = -torch.exp(w.float().contiguous())
u = u.float().contiguous()
k = k.float().contiguous()
v = v.float().contiguous()
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
ctx.save_for_backward(w, u, k, v, y)
if "32" in RWKV_FLOAT_MODE:
return y
elif RWKV_FLOAT_MODE == "float16":
return y.half()
@staticmethod
def backward(ctx, gy):
B = ctx.B
T = ctx.T
C = ctx.C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w, u, k, v, y = ctx.saved_tensors
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
if "32" in RWKV_FLOAT_MODE:
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
else:
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.float().contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
if "32" in RWKV_FLOAT_MODE:
return (None, None, None, gw, gu, gk, gv)
elif RWKV_FLOAT_MODE == "float16":
return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
global WKVKernel
WKVKernel = WKV
|