--- tags: - spacy - token-classification language: - es license: mit model-index: - name: es_BreastCancerNER results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9245630175 - name: NER Recall type: recall value: 0.9396914446 - name: NER F Score type: f_score value: 0.9320658474 --- Breast Cancer Diagnosis NER model | Feature | Description | | --- | --- | | **Name** | `es_BreastCancerNER` | | **Version** | `0.0.0` | | **spaCy** | `>=3.5.0,<3.6.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | `mit` | | **Author** | [Álvaro García Barragán](https://huggingface.co/Alvaro8gb/es_BreastCancerNER) | ### Label Scheme
View label scheme (21 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `CANCER_CONCEPT`, `CANCER_EXP`, `CANCER_GRADE`, `CANCER_INTRTYPE`, `CANCER_LOC`, `CANCER_MET`, `CANCER_REC`, `CANCER_STAGE`, `CANCER_SUBTYPE`, `CANCER_TYPE`, `DATE`, `IMPLICIT_DATE`, `MOLEC_MARKER`, `SURGERY`, `TNM`, `TRAT`, `TRAT_DRUG`, `TRAT_FREQ`, `TRAT_INTERVAL`, `TRAT_QUANTITY`, `TRAT_SHEMA` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 93.21 | | `ENTS_P` | 92.46 | | `ENTS_R` | 93.97 | | `TRANSFORMER_LOSS` | 45014.63 | | `NER_LOSS` | 1216054.67 | ## Citation If you use our work in your research, please cite it as follows: ```bibtex @INPROCEEDINGS{garcia-barraganCBMS2023, author={García-Barragán, Alvaro and Solarte-Pabón, Oswaldo and Nedostup, Georgiy and Provencio, Mariano and Menasalvas, Ernestina and Robles, Victor}, booktitle={2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS)}, title={Structuring Breast Cancer Spanish Electronic Health Records Using Deep Learning}, year={2023}, pages={404-409}, keywords={Natural Language Processing (NLP), Information extraction, Deep Learning, Breast cancer.}, doi={10.1109/CBMS58004.2023.00252} } ```