izhx commited on
Commit
4e88bd5
1 Parent(s): 45c472c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -3
README.md CHANGED
@@ -5,6 +5,82 @@ tags:
5
  - transformers
6
  - sentence-transformers
7
  - text-embeddings-inference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
 
10
  ## gte-multilingual-reranker-base
@@ -22,6 +98,10 @@ The **gte-multilingual-reranker-base** model is the first reranker model in the
22
 
23
 
24
  ### Usage
 
 
 
 
25
 
26
  Using Huggingface transformers (transformers>=4.36.0)
27
  ```
@@ -31,7 +111,10 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
31
  model_name_or_path = "Alibaba-NLP/gte-multilingual-reranker-base"
32
 
33
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
34
- model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, trust_remote_code=True)
 
 
 
35
  model.eval()
36
 
37
  pairs = [["中国的首都在哪儿","北京"], ["what is the capital of China?", "北京"], ["how to implement quick sort in python?","Introduction of quick sort"]]
@@ -43,8 +126,6 @@ with torch.no_grad():
43
  # tensor([1.2315, 0.5923, 0.3041])
44
  ```
45
 
46
- ### How to use it offline
47
- Refer to [Disable trust_remote_code](https://huggingface.co/Alibaba-NLP/new-impl/discussions/2#662b08d04d8c3d0a09c88fa3)
48
 
49
  ## Evaluation
50
 
 
5
  - transformers
6
  - sentence-transformers
7
  - text-embeddings-inference
8
+ language:
9
+ - af
10
+ - ar
11
+ - az
12
+ - be
13
+ - bg
14
+ - bn
15
+ - ca
16
+ - ceb
17
+ - cs
18
+ - cy
19
+ - da
20
+ - de
21
+ - el
22
+ - en
23
+ - es
24
+ - et
25
+ - eu
26
+ - fa
27
+ - fi
28
+ - fr
29
+ - gl
30
+ - gu
31
+ - he
32
+ - hi
33
+ - hr
34
+ - ht
35
+ - hu
36
+ - hy
37
+ - id
38
+ - is
39
+ - it
40
+ - ja
41
+ - jv
42
+ - ka
43
+ - kk
44
+ - km
45
+ - kn
46
+ - ko
47
+ - ky
48
+ - lo
49
+ - lt
50
+ - lv
51
+ - mk
52
+ - ml
53
+ - mn
54
+ - mr
55
+ - ms
56
+ - my
57
+ - ne
58
+ - nl
59
+ - 'no'
60
+ - pa
61
+ - pl
62
+ - pt
63
+ - qu
64
+ - ro
65
+ - ru
66
+ - si
67
+ - sk
68
+ - sl
69
+ - so
70
+ - sq
71
+ - sr
72
+ - sv
73
+ - sw
74
+ - ta
75
+ - te
76
+ - th
77
+ - tl
78
+ - tr
79
+ - uk
80
+ - ur
81
+ - vi
82
+ - yo
83
+ - zh
84
  ---
85
 
86
  ## gte-multilingual-reranker-base
 
98
 
99
 
100
  ### Usage
101
+ - **It is recommended to install xformers and enable unpadding for acceleration,
102
+ refer to [enable-unpadding-and-xformers](https://huggingface.co/Alibaba-NLP/new-impl#recommendation-enable-unpadding-and-acceleration-with-xformers).**
103
+ - **How to use it offline: [new-impl/discussions/2](https://huggingface.co/Alibaba-NLP/new-impl/discussions/2#662b08d04d8c3d0a09c88fa3)**
104
+
105
 
106
  Using Huggingface transformers (transformers>=4.36.0)
107
  ```
 
111
  model_name_or_path = "Alibaba-NLP/gte-multilingual-reranker-base"
112
 
113
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
114
+ model = AutoModelForSequenceClassification.from_pretrained(
115
+ model_name_or_path, trust_remote_code=True,
116
+ torch_dtype=torch.float16
117
+ )
118
  model.eval()
119
 
120
  pairs = [["中国的首都在哪儿","北京"], ["what is the capital of China?", "北京"], ["how to implement quick sort in python?","Introduction of quick sort"]]
 
126
  # tensor([1.2315, 0.5923, 0.3041])
127
  ```
128
 
 
 
129
 
130
  ## Evaluation
131