izhx commited on
Commit
86bf455
1 Parent(s): d65c41e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2731 -0
README.md CHANGED
@@ -1,3 +1,2734 @@
1
  ---
 
 
 
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: transformers
3
+ tags:
4
+ - gte
5
+ - mteb
6
  license: apache-2.0
7
+ language:
8
+ - en
9
+ model-index:
10
+ - name: gte-base-en-v1.5
11
+ results:
12
+ - task:
13
+ type: Classification
14
+ dataset:
15
+ type: mteb/amazon_counterfactual
16
+ name: MTEB AmazonCounterfactualClassification (en)
17
+ config: en
18
+ split: test
19
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
20
+ metrics:
21
+ - type: accuracy
22
+ value: 74.7910447761194
23
+ - type: ap
24
+ value: 37.053785713650626
25
+ - type: f1
26
+ value: 68.51101510998551
27
+ - task:
28
+ type: Classification
29
+ dataset:
30
+ type: mteb/amazon_polarity
31
+ name: MTEB AmazonPolarityClassification
32
+ config: default
33
+ split: test
34
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
35
+ metrics:
36
+ - type: accuracy
37
+ value: 93.016875
38
+ - type: ap
39
+ value: 89.17750268426342
40
+ - type: f1
41
+ value: 92.9970977240524
42
+ - task:
43
+ type: Classification
44
+ dataset:
45
+ type: mteb/amazon_reviews_multi
46
+ name: MTEB AmazonReviewsClassification (en)
47
+ config: en
48
+ split: test
49
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
50
+ metrics:
51
+ - type: accuracy
52
+ value: 53.312000000000005
53
+ - type: f1
54
+ value: 52.98175784163017
55
+ - task:
56
+ type: Retrieval
57
+ dataset:
58
+ type: mteb/arguana
59
+ name: MTEB ArguAna
60
+ config: default
61
+ split: test
62
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
63
+ metrics:
64
+ - type: map_at_1
65
+ value: 38.193
66
+ - type: map_at_10
67
+ value: 54.848
68
+ - type: map_at_100
69
+ value: 55.388000000000005
70
+ - type: map_at_1000
71
+ value: 55.388999999999996
72
+ - type: map_at_3
73
+ value: 50.427
74
+ - type: map_at_5
75
+ value: 53.105000000000004
76
+ - type: mrr_at_1
77
+ value: 39.047
78
+ - type: mrr_at_10
79
+ value: 55.153
80
+ - type: mrr_at_100
81
+ value: 55.686
82
+ - type: mrr_at_1000
83
+ value: 55.688
84
+ - type: mrr_at_3
85
+ value: 50.676
86
+ - type: mrr_at_5
87
+ value: 53.417
88
+ - type: ndcg_at_1
89
+ value: 38.193
90
+ - type: ndcg_at_10
91
+ value: 63.486
92
+ - type: ndcg_at_100
93
+ value: 65.58
94
+ - type: ndcg_at_1000
95
+ value: 65.61
96
+ - type: ndcg_at_3
97
+ value: 54.494
98
+ - type: ndcg_at_5
99
+ value: 59.339
100
+ - type: precision_at_1
101
+ value: 38.193
102
+ - type: precision_at_10
103
+ value: 9.075
104
+ - type: precision_at_100
105
+ value: 0.9939999999999999
106
+ - type: precision_at_1000
107
+ value: 0.1
108
+ - type: precision_at_3
109
+ value: 22.096
110
+ - type: precision_at_5
111
+ value: 15.619
112
+ - type: recall_at_1
113
+ value: 38.193
114
+ - type: recall_at_10
115
+ value: 90.754
116
+ - type: recall_at_100
117
+ value: 99.431
118
+ - type: recall_at_1000
119
+ value: 99.644
120
+ - type: recall_at_3
121
+ value: 66.28699999999999
122
+ - type: recall_at_5
123
+ value: 78.094
124
+ - task:
125
+ type: Clustering
126
+ dataset:
127
+ type: mteb/arxiv-clustering-p2p
128
+ name: MTEB ArxivClusteringP2P
129
+ config: default
130
+ split: test
131
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
132
+ metrics:
133
+ - type: v_measure
134
+ value: 47.508221208908964
135
+ - task:
136
+ type: Clustering
137
+ dataset:
138
+ type: mteb/arxiv-clustering-s2s
139
+ name: MTEB ArxivClusteringS2S
140
+ config: default
141
+ split: test
142
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
143
+ metrics:
144
+ - type: v_measure
145
+ value: 42.04668382560096
146
+ - task:
147
+ type: Reranking
148
+ dataset:
149
+ type: mteb/askubuntudupquestions-reranking
150
+ name: MTEB AskUbuntuDupQuestions
151
+ config: default
152
+ split: test
153
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
154
+ metrics:
155
+ - type: map
156
+ value: 61.828759903716815
157
+ - type: mrr
158
+ value: 74.37343358395991
159
+ - task:
160
+ type: STS
161
+ dataset:
162
+ type: mteb/biosses-sts
163
+ name: MTEB BIOSSES
164
+ config: default
165
+ split: test
166
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
167
+ metrics:
168
+ - type: cos_sim_pearson
169
+ value: 85.03673698773017
170
+ - type: cos_sim_spearman
171
+ value: 83.6470866785058
172
+ - type: euclidean_pearson
173
+ value: 82.64048673096565
174
+ - type: euclidean_spearman
175
+ value: 83.63142367101115
176
+ - type: manhattan_pearson
177
+ value: 82.71493099760228
178
+ - type: manhattan_spearman
179
+ value: 83.60491704294326
180
+ - task:
181
+ type: Classification
182
+ dataset:
183
+ type: mteb/banking77
184
+ name: MTEB Banking77Classification
185
+ config: default
186
+ split: test
187
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
188
+ metrics:
189
+ - type: accuracy
190
+ value: 86.73376623376623
191
+ - type: f1
192
+ value: 86.70294049278262
193
+ - task:
194
+ type: Clustering
195
+ dataset:
196
+ type: mteb/biorxiv-clustering-p2p
197
+ name: MTEB BiorxivClusteringP2P
198
+ config: default
199
+ split: test
200
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
201
+ metrics:
202
+ - type: v_measure
203
+ value: 40.31923804167062
204
+ - task:
205
+ type: Clustering
206
+ dataset:
207
+ type: mteb/biorxiv-clustering-s2s
208
+ name: MTEB BiorxivClusteringS2S
209
+ config: default
210
+ split: test
211
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
212
+ metrics:
213
+ - type: v_measure
214
+ value: 37.552547125348454
215
+ - task:
216
+ type: Retrieval
217
+ dataset:
218
+ type: mteb/cqadupstack-android
219
+ name: MTEB CQADupstackAndroidRetrieval
220
+ config: default
221
+ split: test
222
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
223
+ metrics:
224
+ - type: map_at_1
225
+ value: 30.567
226
+ - type: map_at_10
227
+ value: 41.269
228
+ - type: map_at_100
229
+ value: 42.689
230
+ - type: map_at_1000
231
+ value: 42.84
232
+ - type: map_at_3
233
+ value: 37.567
234
+ - type: map_at_5
235
+ value: 39.706
236
+ - type: mrr_at_1
237
+ value: 37.053000000000004
238
+ - type: mrr_at_10
239
+ value: 46.900999999999996
240
+ - type: mrr_at_100
241
+ value: 47.662
242
+ - type: mrr_at_1000
243
+ value: 47.713
244
+ - type: mrr_at_3
245
+ value: 43.801
246
+ - type: mrr_at_5
247
+ value: 45.689
248
+ - type: ndcg_at_1
249
+ value: 37.053000000000004
250
+ - type: ndcg_at_10
251
+ value: 47.73
252
+ - type: ndcg_at_100
253
+ value: 53.128
254
+ - type: ndcg_at_1000
255
+ value: 55.300000000000004
256
+ - type: ndcg_at_3
257
+ value: 42.046
258
+ - type: ndcg_at_5
259
+ value: 44.782
260
+ - type: precision_at_1
261
+ value: 37.053000000000004
262
+ - type: precision_at_10
263
+ value: 9.142
264
+ - type: precision_at_100
265
+ value: 1.485
266
+ - type: precision_at_1000
267
+ value: 0.197
268
+ - type: precision_at_3
269
+ value: 20.076
270
+ - type: precision_at_5
271
+ value: 14.535
272
+ - type: recall_at_1
273
+ value: 30.567
274
+ - type: recall_at_10
275
+ value: 60.602999999999994
276
+ - type: recall_at_100
277
+ value: 83.22800000000001
278
+ - type: recall_at_1000
279
+ value: 96.696
280
+ - type: recall_at_3
281
+ value: 44.336999999999996
282
+ - type: recall_at_5
283
+ value: 51.949
284
+ - task:
285
+ type: Retrieval
286
+ dataset:
287
+ type: mteb/cqadupstack-english
288
+ name: MTEB CQADupstackEnglishRetrieval
289
+ config: default
290
+ split: test
291
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
292
+ metrics:
293
+ - type: map_at_1
294
+ value: 28.538000000000004
295
+ - type: map_at_10
296
+ value: 38.757999999999996
297
+ - type: map_at_100
298
+ value: 40.129
299
+ - type: map_at_1000
300
+ value: 40.262
301
+ - type: map_at_3
302
+ value: 35.866
303
+ - type: map_at_5
304
+ value: 37.417
305
+ - type: mrr_at_1
306
+ value: 36.051
307
+ - type: mrr_at_10
308
+ value: 44.868
309
+ - type: mrr_at_100
310
+ value: 45.568999999999996
311
+ - type: mrr_at_1000
312
+ value: 45.615
313
+ - type: mrr_at_3
314
+ value: 42.558
315
+ - type: mrr_at_5
316
+ value: 43.883
317
+ - type: ndcg_at_1
318
+ value: 36.051
319
+ - type: ndcg_at_10
320
+ value: 44.584
321
+ - type: ndcg_at_100
322
+ value: 49.356
323
+ - type: ndcg_at_1000
324
+ value: 51.39
325
+ - type: ndcg_at_3
326
+ value: 40.389
327
+ - type: ndcg_at_5
328
+ value: 42.14
329
+ - type: precision_at_1
330
+ value: 36.051
331
+ - type: precision_at_10
332
+ value: 8.446
333
+ - type: precision_at_100
334
+ value: 1.411
335
+ - type: precision_at_1000
336
+ value: 0.19
337
+ - type: precision_at_3
338
+ value: 19.639
339
+ - type: precision_at_5
340
+ value: 13.796
341
+ - type: recall_at_1
342
+ value: 28.538000000000004
343
+ - type: recall_at_10
344
+ value: 54.99000000000001
345
+ - type: recall_at_100
346
+ value: 75.098
347
+ - type: recall_at_1000
348
+ value: 87.848
349
+ - type: recall_at_3
350
+ value: 42.236000000000004
351
+ - type: recall_at_5
352
+ value: 47.377
353
+ - task:
354
+ type: Retrieval
355
+ dataset:
356
+ type: mteb/cqadupstack-gaming
357
+ name: MTEB CQADupstackGamingRetrieval
358
+ config: default
359
+ split: test
360
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
361
+ metrics:
362
+ - type: map_at_1
363
+ value: 37.188
364
+ - type: map_at_10
365
+ value: 50.861000000000004
366
+ - type: map_at_100
367
+ value: 51.917
368
+ - type: map_at_1000
369
+ value: 51.964999999999996
370
+ - type: map_at_3
371
+ value: 47.144000000000005
372
+ - type: map_at_5
373
+ value: 49.417
374
+ - type: mrr_at_1
375
+ value: 42.571
376
+ - type: mrr_at_10
377
+ value: 54.086999999999996
378
+ - type: mrr_at_100
379
+ value: 54.739000000000004
380
+ - type: mrr_at_1000
381
+ value: 54.762
382
+ - type: mrr_at_3
383
+ value: 51.285000000000004
384
+ - type: mrr_at_5
385
+ value: 53.0
386
+ - type: ndcg_at_1
387
+ value: 42.571
388
+ - type: ndcg_at_10
389
+ value: 57.282
390
+ - type: ndcg_at_100
391
+ value: 61.477000000000004
392
+ - type: ndcg_at_1000
393
+ value: 62.426
394
+ - type: ndcg_at_3
395
+ value: 51.0
396
+ - type: ndcg_at_5
397
+ value: 54.346000000000004
398
+ - type: precision_at_1
399
+ value: 42.571
400
+ - type: precision_at_10
401
+ value: 9.467
402
+ - type: precision_at_100
403
+ value: 1.2550000000000001
404
+ - type: precision_at_1000
405
+ value: 0.13799999999999998
406
+ - type: precision_at_3
407
+ value: 23.114
408
+ - type: precision_at_5
409
+ value: 16.250999999999998
410
+ - type: recall_at_1
411
+ value: 37.188
412
+ - type: recall_at_10
413
+ value: 73.068
414
+ - type: recall_at_100
415
+ value: 91.203
416
+ - type: recall_at_1000
417
+ value: 97.916
418
+ - type: recall_at_3
419
+ value: 56.552
420
+ - type: recall_at_5
421
+ value: 64.567
422
+ - task:
423
+ type: Retrieval
424
+ dataset:
425
+ type: mteb/cqadupstack-gis
426
+ name: MTEB CQADupstackGisRetrieval
427
+ config: default
428
+ split: test
429
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
430
+ metrics:
431
+ - type: map_at_1
432
+ value: 25.041000000000004
433
+ - type: map_at_10
434
+ value: 33.86
435
+ - type: map_at_100
436
+ value: 34.988
437
+ - type: map_at_1000
438
+ value: 35.064
439
+ - type: map_at_3
440
+ value: 31.049
441
+ - type: map_at_5
442
+ value: 32.845
443
+ - type: mrr_at_1
444
+ value: 26.893
445
+ - type: mrr_at_10
446
+ value: 35.594
447
+ - type: mrr_at_100
448
+ value: 36.617
449
+ - type: mrr_at_1000
450
+ value: 36.671
451
+ - type: mrr_at_3
452
+ value: 33.051
453
+ - type: mrr_at_5
454
+ value: 34.61
455
+ - type: ndcg_at_1
456
+ value: 26.893
457
+ - type: ndcg_at_10
458
+ value: 38.674
459
+ - type: ndcg_at_100
460
+ value: 44.178
461
+ - type: ndcg_at_1000
462
+ value: 46.089999999999996
463
+ - type: ndcg_at_3
464
+ value: 33.485
465
+ - type: ndcg_at_5
466
+ value: 36.402
467
+ - type: precision_at_1
468
+ value: 26.893
469
+ - type: precision_at_10
470
+ value: 5.989
471
+ - type: precision_at_100
472
+ value: 0.918
473
+ - type: precision_at_1000
474
+ value: 0.11100000000000002
475
+ - type: precision_at_3
476
+ value: 14.2
477
+ - type: precision_at_5
478
+ value: 10.26
479
+ - type: recall_at_1
480
+ value: 25.041000000000004
481
+ - type: recall_at_10
482
+ value: 51.666000000000004
483
+ - type: recall_at_100
484
+ value: 76.896
485
+ - type: recall_at_1000
486
+ value: 91.243
487
+ - type: recall_at_3
488
+ value: 38.035999999999994
489
+ - type: recall_at_5
490
+ value: 44.999
491
+ - task:
492
+ type: Retrieval
493
+ dataset:
494
+ type: mteb/cqadupstack-mathematica
495
+ name: MTEB CQADupstackMathematicaRetrieval
496
+ config: default
497
+ split: test
498
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
499
+ metrics:
500
+ - type: map_at_1
501
+ value: 15.909999999999998
502
+ - type: map_at_10
503
+ value: 23.901
504
+ - type: map_at_100
505
+ value: 25.165
506
+ - type: map_at_1000
507
+ value: 25.291000000000004
508
+ - type: map_at_3
509
+ value: 21.356
510
+ - type: map_at_5
511
+ value: 22.816
512
+ - type: mrr_at_1
513
+ value: 20.025000000000002
514
+ - type: mrr_at_10
515
+ value: 28.382
516
+ - type: mrr_at_100
517
+ value: 29.465000000000003
518
+ - type: mrr_at_1000
519
+ value: 29.535
520
+ - type: mrr_at_3
521
+ value: 25.933
522
+ - type: mrr_at_5
523
+ value: 27.332
524
+ - type: ndcg_at_1
525
+ value: 20.025000000000002
526
+ - type: ndcg_at_10
527
+ value: 29.099000000000004
528
+ - type: ndcg_at_100
529
+ value: 35.127
530
+ - type: ndcg_at_1000
531
+ value: 38.096000000000004
532
+ - type: ndcg_at_3
533
+ value: 24.464
534
+ - type: ndcg_at_5
535
+ value: 26.709
536
+ - type: precision_at_1
537
+ value: 20.025000000000002
538
+ - type: precision_at_10
539
+ value: 5.398
540
+ - type: precision_at_100
541
+ value: 0.9690000000000001
542
+ - type: precision_at_1000
543
+ value: 0.13699999999999998
544
+ - type: precision_at_3
545
+ value: 11.774
546
+ - type: precision_at_5
547
+ value: 8.632
548
+ - type: recall_at_1
549
+ value: 15.909999999999998
550
+ - type: recall_at_10
551
+ value: 40.672000000000004
552
+ - type: recall_at_100
553
+ value: 66.855
554
+ - type: recall_at_1000
555
+ value: 87.922
556
+ - type: recall_at_3
557
+ value: 28.069
558
+ - type: recall_at_5
559
+ value: 33.812
560
+ - task:
561
+ type: Retrieval
562
+ dataset:
563
+ type: mteb/cqadupstack-physics
564
+ name: MTEB CQADupstackPhysicsRetrieval
565
+ config: default
566
+ split: test
567
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
568
+ metrics:
569
+ - type: map_at_1
570
+ value: 30.175
571
+ - type: map_at_10
572
+ value: 41.36
573
+ - type: map_at_100
574
+ value: 42.701
575
+ - type: map_at_1000
576
+ value: 42.817
577
+ - type: map_at_3
578
+ value: 37.931
579
+ - type: map_at_5
580
+ value: 39.943
581
+ - type: mrr_at_1
582
+ value: 35.611
583
+ - type: mrr_at_10
584
+ value: 46.346
585
+ - type: mrr_at_100
586
+ value: 47.160000000000004
587
+ - type: mrr_at_1000
588
+ value: 47.203
589
+ - type: mrr_at_3
590
+ value: 43.712
591
+ - type: mrr_at_5
592
+ value: 45.367000000000004
593
+ - type: ndcg_at_1
594
+ value: 35.611
595
+ - type: ndcg_at_10
596
+ value: 47.532000000000004
597
+ - type: ndcg_at_100
598
+ value: 53.003
599
+ - type: ndcg_at_1000
600
+ value: 55.007
601
+ - type: ndcg_at_3
602
+ value: 42.043
603
+ - type: ndcg_at_5
604
+ value: 44.86
605
+ - type: precision_at_1
606
+ value: 35.611
607
+ - type: precision_at_10
608
+ value: 8.624
609
+ - type: precision_at_100
610
+ value: 1.332
611
+ - type: precision_at_1000
612
+ value: 0.169
613
+ - type: precision_at_3
614
+ value: 20.083000000000002
615
+ - type: precision_at_5
616
+ value: 14.437
617
+ - type: recall_at_1
618
+ value: 30.175
619
+ - type: recall_at_10
620
+ value: 60.5
621
+ - type: recall_at_100
622
+ value: 83.399
623
+ - type: recall_at_1000
624
+ value: 96.255
625
+ - type: recall_at_3
626
+ value: 45.448
627
+ - type: recall_at_5
628
+ value: 52.432
629
+ - task:
630
+ type: Retrieval
631
+ dataset:
632
+ type: mteb/cqadupstack-programmers
633
+ name: MTEB CQADupstackProgrammersRetrieval
634
+ config: default
635
+ split: test
636
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
637
+ metrics:
638
+ - type: map_at_1
639
+ value: 22.467000000000002
640
+ - type: map_at_10
641
+ value: 33.812999999999995
642
+ - type: map_at_100
643
+ value: 35.248000000000005
644
+ - type: map_at_1000
645
+ value: 35.359
646
+ - type: map_at_3
647
+ value: 30.316
648
+ - type: map_at_5
649
+ value: 32.233000000000004
650
+ - type: mrr_at_1
651
+ value: 28.310999999999996
652
+ - type: mrr_at_10
653
+ value: 38.979
654
+ - type: mrr_at_100
655
+ value: 39.937
656
+ - type: mrr_at_1000
657
+ value: 39.989999999999995
658
+ - type: mrr_at_3
659
+ value: 36.244
660
+ - type: mrr_at_5
661
+ value: 37.871
662
+ - type: ndcg_at_1
663
+ value: 28.310999999999996
664
+ - type: ndcg_at_10
665
+ value: 40.282000000000004
666
+ - type: ndcg_at_100
667
+ value: 46.22
668
+ - type: ndcg_at_1000
669
+ value: 48.507
670
+ - type: ndcg_at_3
671
+ value: 34.596
672
+ - type: ndcg_at_5
673
+ value: 37.267
674
+ - type: precision_at_1
675
+ value: 28.310999999999996
676
+ - type: precision_at_10
677
+ value: 7.831
678
+ - type: precision_at_100
679
+ value: 1.257
680
+ - type: precision_at_1000
681
+ value: 0.164
682
+ - type: precision_at_3
683
+ value: 17.275
684
+ - type: precision_at_5
685
+ value: 12.556999999999999
686
+ - type: recall_at_1
687
+ value: 22.467000000000002
688
+ - type: recall_at_10
689
+ value: 54.14099999999999
690
+ - type: recall_at_100
691
+ value: 79.593
692
+ - type: recall_at_1000
693
+ value: 95.063
694
+ - type: recall_at_3
695
+ value: 38.539
696
+ - type: recall_at_5
697
+ value: 45.403
698
+ - task:
699
+ type: Retrieval
700
+ dataset:
701
+ type: mteb/cqadupstack
702
+ name: MTEB CQADupstackRetrieval
703
+ config: default
704
+ split: test
705
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
706
+ metrics:
707
+ - type: map_at_1
708
+ value: 24.18591666666667
709
+ - type: map_at_10
710
+ value: 33.84258333333333
711
+ - type: map_at_100
712
+ value: 35.11391666666666
713
+ - type: map_at_1000
714
+ value: 35.23258333333333
715
+ - type: map_at_3
716
+ value: 30.764249999999997
717
+ - type: map_at_5
718
+ value: 32.52333333333334
719
+ - type: mrr_at_1
720
+ value: 28.54733333333333
721
+ - type: mrr_at_10
722
+ value: 37.81725
723
+ - type: mrr_at_100
724
+ value: 38.716499999999996
725
+ - type: mrr_at_1000
726
+ value: 38.77458333333333
727
+ - type: mrr_at_3
728
+ value: 35.157833333333336
729
+ - type: mrr_at_5
730
+ value: 36.69816666666667
731
+ - type: ndcg_at_1
732
+ value: 28.54733333333333
733
+ - type: ndcg_at_10
734
+ value: 39.51508333333334
735
+ - type: ndcg_at_100
736
+ value: 44.95316666666666
737
+ - type: ndcg_at_1000
738
+ value: 47.257083333333334
739
+ - type: ndcg_at_3
740
+ value: 34.205833333333324
741
+ - type: ndcg_at_5
742
+ value: 36.78266666666667
743
+ - type: precision_at_1
744
+ value: 28.54733333333333
745
+ - type: precision_at_10
746
+ value: 7.082583333333334
747
+ - type: precision_at_100
748
+ value: 1.1590833333333332
749
+ - type: precision_at_1000
750
+ value: 0.15516666666666662
751
+ - type: precision_at_3
752
+ value: 15.908750000000001
753
+ - type: precision_at_5
754
+ value: 11.505416666666669
755
+ - type: recall_at_1
756
+ value: 24.18591666666667
757
+ - type: recall_at_10
758
+ value: 52.38758333333333
759
+ - type: recall_at_100
760
+ value: 76.13666666666667
761
+ - type: recall_at_1000
762
+ value: 91.99066666666667
763
+ - type: recall_at_3
764
+ value: 37.78333333333334
765
+ - type: recall_at_5
766
+ value: 44.30141666666666
767
+ - task:
768
+ type: Retrieval
769
+ dataset:
770
+ type: mteb/cqadupstack-stats
771
+ name: MTEB CQADupstackStatsRetrieval
772
+ config: default
773
+ split: test
774
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
775
+ metrics:
776
+ - type: map_at_1
777
+ value: 21.975
778
+ - type: map_at_10
779
+ value: 29.781000000000002
780
+ - type: map_at_100
781
+ value: 30.847
782
+ - type: map_at_1000
783
+ value: 30.94
784
+ - type: map_at_3
785
+ value: 27.167
786
+ - type: map_at_5
787
+ value: 28.633999999999997
788
+ - type: mrr_at_1
789
+ value: 24.387
790
+ - type: mrr_at_10
791
+ value: 32.476
792
+ - type: mrr_at_100
793
+ value: 33.337
794
+ - type: mrr_at_1000
795
+ value: 33.403
796
+ - type: mrr_at_3
797
+ value: 29.881999999999998
798
+ - type: mrr_at_5
799
+ value: 31.339
800
+ - type: ndcg_at_1
801
+ value: 24.387
802
+ - type: ndcg_at_10
803
+ value: 34.596
804
+ - type: ndcg_at_100
805
+ value: 39.635
806
+ - type: ndcg_at_1000
807
+ value: 42.079
808
+ - type: ndcg_at_3
809
+ value: 29.516
810
+ - type: ndcg_at_5
811
+ value: 31.959
812
+ - type: precision_at_1
813
+ value: 24.387
814
+ - type: precision_at_10
815
+ value: 5.6129999999999995
816
+ - type: precision_at_100
817
+ value: 0.8909999999999999
818
+ - type: precision_at_1000
819
+ value: 0.117
820
+ - type: precision_at_3
821
+ value: 12.73
822
+ - type: precision_at_5
823
+ value: 9.171999999999999
824
+ - type: recall_at_1
825
+ value: 21.975
826
+ - type: recall_at_10
827
+ value: 46.826
828
+ - type: recall_at_100
829
+ value: 69.554
830
+ - type: recall_at_1000
831
+ value: 87.749
832
+ - type: recall_at_3
833
+ value: 33.016
834
+ - type: recall_at_5
835
+ value: 38.97
836
+ - task:
837
+ type: Retrieval
838
+ dataset:
839
+ type: mteb/cqadupstack-tex
840
+ name: MTEB CQADupstackTexRetrieval
841
+ config: default
842
+ split: test
843
+ revision: 46989137a86843e03a6195de44b09deda022eec7
844
+ metrics:
845
+ - type: map_at_1
846
+ value: 15.614
847
+ - type: map_at_10
848
+ value: 22.927
849
+ - type: map_at_100
850
+ value: 24.185000000000002
851
+ - type: map_at_1000
852
+ value: 24.319
853
+ - type: map_at_3
854
+ value: 20.596
855
+ - type: map_at_5
856
+ value: 21.854000000000003
857
+ - type: mrr_at_1
858
+ value: 18.858
859
+ - type: mrr_at_10
860
+ value: 26.535999999999998
861
+ - type: mrr_at_100
862
+ value: 27.582
863
+ - type: mrr_at_1000
864
+ value: 27.665
865
+ - type: mrr_at_3
866
+ value: 24.295
867
+ - type: mrr_at_5
868
+ value: 25.532
869
+ - type: ndcg_at_1
870
+ value: 18.858
871
+ - type: ndcg_at_10
872
+ value: 27.583000000000002
873
+ - type: ndcg_at_100
874
+ value: 33.635
875
+ - type: ndcg_at_1000
876
+ value: 36.647
877
+ - type: ndcg_at_3
878
+ value: 23.348
879
+ - type: ndcg_at_5
880
+ value: 25.257
881
+ - type: precision_at_1
882
+ value: 18.858
883
+ - type: precision_at_10
884
+ value: 5.158
885
+ - type: precision_at_100
886
+ value: 0.964
887
+ - type: precision_at_1000
888
+ value: 0.13999999999999999
889
+ - type: precision_at_3
890
+ value: 11.092
891
+ - type: precision_at_5
892
+ value: 8.1
893
+ - type: recall_at_1
894
+ value: 15.614
895
+ - type: recall_at_10
896
+ value: 37.916
897
+ - type: recall_at_100
898
+ value: 65.205
899
+ - type: recall_at_1000
900
+ value: 86.453
901
+ - type: recall_at_3
902
+ value: 26.137
903
+ - type: recall_at_5
904
+ value: 31.087999999999997
905
+ - task:
906
+ type: Retrieval
907
+ dataset:
908
+ type: mteb/cqadupstack-unix
909
+ name: MTEB CQADupstackUnixRetrieval
910
+ config: default
911
+ split: test
912
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
913
+ metrics:
914
+ - type: map_at_1
915
+ value: 23.078000000000003
916
+ - type: map_at_10
917
+ value: 31.941999999999997
918
+ - type: map_at_100
919
+ value: 33.196999999999996
920
+ - type: map_at_1000
921
+ value: 33.303
922
+ - type: map_at_3
923
+ value: 28.927000000000003
924
+ - type: map_at_5
925
+ value: 30.707
926
+ - type: mrr_at_1
927
+ value: 26.866
928
+ - type: mrr_at_10
929
+ value: 35.557
930
+ - type: mrr_at_100
931
+ value: 36.569
932
+ - type: mrr_at_1000
933
+ value: 36.632
934
+ - type: mrr_at_3
935
+ value: 32.897999999999996
936
+ - type: mrr_at_5
937
+ value: 34.437
938
+ - type: ndcg_at_1
939
+ value: 26.866
940
+ - type: ndcg_at_10
941
+ value: 37.372
942
+ - type: ndcg_at_100
943
+ value: 43.248
944
+ - type: ndcg_at_1000
945
+ value: 45.632
946
+ - type: ndcg_at_3
947
+ value: 31.852999999999998
948
+ - type: ndcg_at_5
949
+ value: 34.582
950
+ - type: precision_at_1
951
+ value: 26.866
952
+ - type: precision_at_10
953
+ value: 6.511
954
+ - type: precision_at_100
955
+ value: 1.078
956
+ - type: precision_at_1000
957
+ value: 0.13899999999999998
958
+ - type: precision_at_3
959
+ value: 14.582999999999998
960
+ - type: precision_at_5
961
+ value: 10.634
962
+ - type: recall_at_1
963
+ value: 23.078000000000003
964
+ - type: recall_at_10
965
+ value: 50.334
966
+ - type: recall_at_100
967
+ value: 75.787
968
+ - type: recall_at_1000
969
+ value: 92.485
970
+ - type: recall_at_3
971
+ value: 35.386
972
+ - type: recall_at_5
973
+ value: 42.225
974
+ - task:
975
+ type: Retrieval
976
+ dataset:
977
+ type: mteb/cqadupstack-webmasters
978
+ name: MTEB CQADupstackWebmastersRetrieval
979
+ config: default
980
+ split: test
981
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
982
+ metrics:
983
+ - type: map_at_1
984
+ value: 22.203999999999997
985
+ - type: map_at_10
986
+ value: 31.276
987
+ - type: map_at_100
988
+ value: 32.844
989
+ - type: map_at_1000
990
+ value: 33.062999999999995
991
+ - type: map_at_3
992
+ value: 27.733999999999998
993
+ - type: map_at_5
994
+ value: 29.64
995
+ - type: mrr_at_1
996
+ value: 27.272999999999996
997
+ - type: mrr_at_10
998
+ value: 36.083
999
+ - type: mrr_at_100
1000
+ value: 37.008
1001
+ - type: mrr_at_1000
1002
+ value: 37.076
1003
+ - type: mrr_at_3
1004
+ value: 33.004
1005
+ - type: mrr_at_5
1006
+ value: 34.664
1007
+ - type: ndcg_at_1
1008
+ value: 27.272999999999996
1009
+ - type: ndcg_at_10
1010
+ value: 37.763000000000005
1011
+ - type: ndcg_at_100
1012
+ value: 43.566
1013
+ - type: ndcg_at_1000
1014
+ value: 46.356
1015
+ - type: ndcg_at_3
1016
+ value: 31.673000000000002
1017
+ - type: ndcg_at_5
1018
+ value: 34.501
1019
+ - type: precision_at_1
1020
+ value: 27.272999999999996
1021
+ - type: precision_at_10
1022
+ value: 7.470000000000001
1023
+ - type: precision_at_100
1024
+ value: 1.502
1025
+ - type: precision_at_1000
1026
+ value: 0.24
1027
+ - type: precision_at_3
1028
+ value: 14.756
1029
+ - type: precision_at_5
1030
+ value: 11.225
1031
+ - type: recall_at_1
1032
+ value: 22.203999999999997
1033
+ - type: recall_at_10
1034
+ value: 51.437999999999995
1035
+ - type: recall_at_100
1036
+ value: 76.845
1037
+ - type: recall_at_1000
1038
+ value: 94.38600000000001
1039
+ - type: recall_at_3
1040
+ value: 34.258
1041
+ - type: recall_at_5
1042
+ value: 41.512
1043
+ - task:
1044
+ type: Retrieval
1045
+ dataset:
1046
+ type: mteb/cqadupstack-wordpress
1047
+ name: MTEB CQADupstackWordpressRetrieval
1048
+ config: default
1049
+ split: test
1050
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1051
+ metrics:
1052
+ - type: map_at_1
1053
+ value: 17.474
1054
+ - type: map_at_10
1055
+ value: 26.362999999999996
1056
+ - type: map_at_100
1057
+ value: 27.456999999999997
1058
+ - type: map_at_1000
1059
+ value: 27.567999999999998
1060
+ - type: map_at_3
1061
+ value: 23.518
1062
+ - type: map_at_5
1063
+ value: 25.068
1064
+ - type: mrr_at_1
1065
+ value: 18.669
1066
+ - type: mrr_at_10
1067
+ value: 27.998
1068
+ - type: mrr_at_100
1069
+ value: 28.953
1070
+ - type: mrr_at_1000
1071
+ value: 29.03
1072
+ - type: mrr_at_3
1073
+ value: 25.230999999999998
1074
+ - type: mrr_at_5
1075
+ value: 26.654
1076
+ - type: ndcg_at_1
1077
+ value: 18.669
1078
+ - type: ndcg_at_10
1079
+ value: 31.684
1080
+ - type: ndcg_at_100
1081
+ value: 36.864999999999995
1082
+ - type: ndcg_at_1000
1083
+ value: 39.555
1084
+ - type: ndcg_at_3
1085
+ value: 26.057000000000002
1086
+ - type: ndcg_at_5
1087
+ value: 28.587
1088
+ - type: precision_at_1
1089
+ value: 18.669
1090
+ - type: precision_at_10
1091
+ value: 5.3420000000000005
1092
+ - type: precision_at_100
1093
+ value: 0.847
1094
+ - type: precision_at_1000
1095
+ value: 0.12
1096
+ - type: precision_at_3
1097
+ value: 11.583
1098
+ - type: precision_at_5
1099
+ value: 8.466
1100
+ - type: recall_at_1
1101
+ value: 17.474
1102
+ - type: recall_at_10
1103
+ value: 46.497
1104
+ - type: recall_at_100
1105
+ value: 69.977
1106
+ - type: recall_at_1000
1107
+ value: 89.872
1108
+ - type: recall_at_3
1109
+ value: 31.385999999999996
1110
+ - type: recall_at_5
1111
+ value: 37.283
1112
+ - task:
1113
+ type: Retrieval
1114
+ dataset:
1115
+ type: mteb/climate-fever
1116
+ name: MTEB ClimateFEVER
1117
+ config: default
1118
+ split: test
1119
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1120
+ metrics:
1121
+ - type: map_at_1
1122
+ value: 17.173
1123
+ - type: map_at_10
1124
+ value: 30.407
1125
+ - type: map_at_100
1126
+ value: 32.528
1127
+ - type: map_at_1000
1128
+ value: 32.698
1129
+ - type: map_at_3
1130
+ value: 25.523
1131
+ - type: map_at_5
1132
+ value: 28.038
1133
+ - type: mrr_at_1
1134
+ value: 38.958
1135
+ - type: mrr_at_10
1136
+ value: 51.515
1137
+ - type: mrr_at_100
1138
+ value: 52.214000000000006
1139
+ - type: mrr_at_1000
1140
+ value: 52.237
1141
+ - type: mrr_at_3
1142
+ value: 48.502
1143
+ - type: mrr_at_5
1144
+ value: 50.251000000000005
1145
+ - type: ndcg_at_1
1146
+ value: 38.958
1147
+ - type: ndcg_at_10
1148
+ value: 40.355000000000004
1149
+ - type: ndcg_at_100
1150
+ value: 47.68
1151
+ - type: ndcg_at_1000
1152
+ value: 50.370000000000005
1153
+ - type: ndcg_at_3
1154
+ value: 33.946
1155
+ - type: ndcg_at_5
1156
+ value: 36.057
1157
+ - type: precision_at_1
1158
+ value: 38.958
1159
+ - type: precision_at_10
1160
+ value: 12.508
1161
+ - type: precision_at_100
1162
+ value: 2.054
1163
+ - type: precision_at_1000
1164
+ value: 0.256
1165
+ - type: precision_at_3
1166
+ value: 25.581
1167
+ - type: precision_at_5
1168
+ value: 19.256999999999998
1169
+ - type: recall_at_1
1170
+ value: 17.173
1171
+ - type: recall_at_10
1172
+ value: 46.967
1173
+ - type: recall_at_100
1174
+ value: 71.47200000000001
1175
+ - type: recall_at_1000
1176
+ value: 86.238
1177
+ - type: recall_at_3
1178
+ value: 30.961
1179
+ - type: recall_at_5
1180
+ value: 37.539
1181
+ - task:
1182
+ type: Retrieval
1183
+ dataset:
1184
+ type: mteb/dbpedia
1185
+ name: MTEB DBPedia
1186
+ config: default
1187
+ split: test
1188
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1189
+ metrics:
1190
+ - type: map_at_1
1191
+ value: 8.999
1192
+ - type: map_at_10
1193
+ value: 18.989
1194
+ - type: map_at_100
1195
+ value: 26.133
1196
+ - type: map_at_1000
1197
+ value: 27.666
1198
+ - type: map_at_3
1199
+ value: 13.918
1200
+ - type: map_at_5
1201
+ value: 16.473
1202
+ - type: mrr_at_1
1203
+ value: 66.25
1204
+ - type: mrr_at_10
1205
+ value: 74.161
1206
+ - type: mrr_at_100
1207
+ value: 74.516
1208
+ - type: mrr_at_1000
1209
+ value: 74.524
1210
+ - type: mrr_at_3
1211
+ value: 72.875
1212
+ - type: mrr_at_5
1213
+ value: 73.613
1214
+ - type: ndcg_at_1
1215
+ value: 54.37499999999999
1216
+ - type: ndcg_at_10
1217
+ value: 39.902
1218
+ - type: ndcg_at_100
1219
+ value: 44.212
1220
+ - type: ndcg_at_1000
1221
+ value: 51.62
1222
+ - type: ndcg_at_3
1223
+ value: 45.193
1224
+ - type: ndcg_at_5
1225
+ value: 42.541000000000004
1226
+ - type: precision_at_1
1227
+ value: 66.25
1228
+ - type: precision_at_10
1229
+ value: 30.425
1230
+ - type: precision_at_100
1231
+ value: 9.754999999999999
1232
+ - type: precision_at_1000
1233
+ value: 2.043
1234
+ - type: precision_at_3
1235
+ value: 48.25
1236
+ - type: precision_at_5
1237
+ value: 40.65
1238
+ - type: recall_at_1
1239
+ value: 8.999
1240
+ - type: recall_at_10
1241
+ value: 24.133
1242
+ - type: recall_at_100
1243
+ value: 49.138999999999996
1244
+ - type: recall_at_1000
1245
+ value: 72.639
1246
+ - type: recall_at_3
1247
+ value: 15.287999999999998
1248
+ - type: recall_at_5
1249
+ value: 19.415
1250
+ - task:
1251
+ type: Classification
1252
+ dataset:
1253
+ type: mteb/emotion
1254
+ name: MTEB EmotionClassification
1255
+ config: default
1256
+ split: test
1257
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1258
+ metrics:
1259
+ - type: accuracy
1260
+ value: 46.38999999999999
1261
+ - type: f1
1262
+ value: 41.444205512055234
1263
+ - task:
1264
+ type: Retrieval
1265
+ dataset:
1266
+ type: mteb/fever
1267
+ name: MTEB FEVER
1268
+ config: default
1269
+ split: test
1270
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1271
+ metrics:
1272
+ - type: map_at_1
1273
+ value: 87.35000000000001
1274
+ - type: map_at_10
1275
+ value: 92.837
1276
+ - type: map_at_100
1277
+ value: 92.996
1278
+ - type: map_at_1000
1279
+ value: 93.006
1280
+ - type: map_at_3
1281
+ value: 92.187
1282
+ - type: map_at_5
1283
+ value: 92.595
1284
+ - type: mrr_at_1
1285
+ value: 93.864
1286
+ - type: mrr_at_10
1287
+ value: 96.723
1288
+ - type: mrr_at_100
1289
+ value: 96.72500000000001
1290
+ - type: mrr_at_1000
1291
+ value: 96.72500000000001
1292
+ - type: mrr_at_3
1293
+ value: 96.64
1294
+ - type: mrr_at_5
1295
+ value: 96.71499999999999
1296
+ - type: ndcg_at_1
1297
+ value: 93.864
1298
+ - type: ndcg_at_10
1299
+ value: 94.813
1300
+ - type: ndcg_at_100
1301
+ value: 95.243
1302
+ - type: ndcg_at_1000
1303
+ value: 95.38600000000001
1304
+ - type: ndcg_at_3
1305
+ value: 94.196
1306
+ - type: ndcg_at_5
1307
+ value: 94.521
1308
+ - type: precision_at_1
1309
+ value: 93.864
1310
+ - type: precision_at_10
1311
+ value: 10.951
1312
+ - type: precision_at_100
1313
+ value: 1.1400000000000001
1314
+ - type: precision_at_1000
1315
+ value: 0.117
1316
+ - type: precision_at_3
1317
+ value: 35.114000000000004
1318
+ - type: precision_at_5
1319
+ value: 21.476
1320
+ - type: recall_at_1
1321
+ value: 87.35000000000001
1322
+ - type: recall_at_10
1323
+ value: 96.941
1324
+ - type: recall_at_100
1325
+ value: 98.397
1326
+ - type: recall_at_1000
1327
+ value: 99.21600000000001
1328
+ - type: recall_at_3
1329
+ value: 95.149
1330
+ - type: recall_at_5
1331
+ value: 96.131
1332
+ - task:
1333
+ type: Retrieval
1334
+ dataset:
1335
+ type: mteb/fiqa
1336
+ name: MTEB FiQA2018
1337
+ config: default
1338
+ split: test
1339
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1340
+ metrics:
1341
+ - type: map_at_1
1342
+ value: 24.476
1343
+ - type: map_at_10
1344
+ value: 40.11
1345
+ - type: map_at_100
1346
+ value: 42.229
1347
+ - type: map_at_1000
1348
+ value: 42.378
1349
+ - type: map_at_3
1350
+ value: 34.512
1351
+ - type: map_at_5
1352
+ value: 38.037
1353
+ - type: mrr_at_1
1354
+ value: 47.839999999999996
1355
+ - type: mrr_at_10
1356
+ value: 57.053
1357
+ - type: mrr_at_100
1358
+ value: 57.772
1359
+ - type: mrr_at_1000
1360
+ value: 57.799
1361
+ - type: mrr_at_3
1362
+ value: 54.552
1363
+ - type: mrr_at_5
1364
+ value: 56.011
1365
+ - type: ndcg_at_1
1366
+ value: 47.839999999999996
1367
+ - type: ndcg_at_10
1368
+ value: 48.650999999999996
1369
+ - type: ndcg_at_100
1370
+ value: 55.681000000000004
1371
+ - type: ndcg_at_1000
1372
+ value: 57.979
1373
+ - type: ndcg_at_3
1374
+ value: 43.923
1375
+ - type: ndcg_at_5
1376
+ value: 46.037
1377
+ - type: precision_at_1
1378
+ value: 47.839999999999996
1379
+ - type: precision_at_10
1380
+ value: 13.395000000000001
1381
+ - type: precision_at_100
1382
+ value: 2.0660000000000003
1383
+ - type: precision_at_1000
1384
+ value: 0.248
1385
+ - type: precision_at_3
1386
+ value: 29.064
1387
+ - type: precision_at_5
1388
+ value: 22.006
1389
+ - type: recall_at_1
1390
+ value: 24.476
1391
+ - type: recall_at_10
1392
+ value: 56.216
1393
+ - type: recall_at_100
1394
+ value: 81.798
1395
+ - type: recall_at_1000
1396
+ value: 95.48299999999999
1397
+ - type: recall_at_3
1398
+ value: 39.357
1399
+ - type: recall_at_5
1400
+ value: 47.802
1401
+ - task:
1402
+ type: Retrieval
1403
+ dataset:
1404
+ type: mteb/hotpotqa
1405
+ name: MTEB HotpotQA
1406
+ config: default
1407
+ split: test
1408
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1409
+ metrics:
1410
+ - type: map_at_1
1411
+ value: 42.728
1412
+ - type: map_at_10
1413
+ value: 57.737
1414
+ - type: map_at_100
1415
+ value: 58.531
1416
+ - type: map_at_1000
1417
+ value: 58.594
1418
+ - type: map_at_3
1419
+ value: 54.869
1420
+ - type: map_at_5
1421
+ value: 56.55
1422
+ - type: mrr_at_1
1423
+ value: 85.456
1424
+ - type: mrr_at_10
1425
+ value: 90.062
1426
+ - type: mrr_at_100
1427
+ value: 90.159
1428
+ - type: mrr_at_1000
1429
+ value: 90.16
1430
+ - type: mrr_at_3
1431
+ value: 89.37899999999999
1432
+ - type: mrr_at_5
1433
+ value: 89.81
1434
+ - type: ndcg_at_1
1435
+ value: 85.456
1436
+ - type: ndcg_at_10
1437
+ value: 67.755
1438
+ - type: ndcg_at_100
1439
+ value: 70.341
1440
+ - type: ndcg_at_1000
1441
+ value: 71.538
1442
+ - type: ndcg_at_3
1443
+ value: 63.735
1444
+ - type: ndcg_at_5
1445
+ value: 65.823
1446
+ - type: precision_at_1
1447
+ value: 85.456
1448
+ - type: precision_at_10
1449
+ value: 13.450000000000001
1450
+ - type: precision_at_100
1451
+ value: 1.545
1452
+ - type: precision_at_1000
1453
+ value: 0.16999999999999998
1454
+ - type: precision_at_3
1455
+ value: 38.861000000000004
1456
+ - type: precision_at_5
1457
+ value: 24.964
1458
+ - type: recall_at_1
1459
+ value: 42.728
1460
+ - type: recall_at_10
1461
+ value: 67.252
1462
+ - type: recall_at_100
1463
+ value: 77.265
1464
+ - type: recall_at_1000
1465
+ value: 85.246
1466
+ - type: recall_at_3
1467
+ value: 58.292
1468
+ - type: recall_at_5
1469
+ value: 62.41100000000001
1470
+ - task:
1471
+ type: Classification
1472
+ dataset:
1473
+ type: mteb/imdb
1474
+ name: MTEB ImdbClassification
1475
+ config: default
1476
+ split: test
1477
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1478
+ metrics:
1479
+ - type: accuracy
1480
+ value: 87.4836
1481
+ - type: ap
1482
+ value: 82.29552224030336
1483
+ - type: f1
1484
+ value: 87.42791432227448
1485
+ - task:
1486
+ type: Retrieval
1487
+ dataset:
1488
+ type: mteb/msmarco
1489
+ name: MTEB MSMARCO
1490
+ config: default
1491
+ split: dev
1492
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1493
+ metrics:
1494
+ - type: map_at_1
1495
+ value: 23.015
1496
+ - type: map_at_10
1497
+ value: 35.621
1498
+ - type: map_at_100
1499
+ value: 36.809
1500
+ - type: map_at_1000
1501
+ value: 36.853
1502
+ - type: map_at_3
1503
+ value: 31.832
1504
+ - type: map_at_5
1505
+ value: 34.006
1506
+ - type: mrr_at_1
1507
+ value: 23.738999999999997
1508
+ - type: mrr_at_10
1509
+ value: 36.309999999999995
1510
+ - type: mrr_at_100
1511
+ value: 37.422
1512
+ - type: mrr_at_1000
1513
+ value: 37.461
1514
+ - type: mrr_at_3
1515
+ value: 32.592999999999996
1516
+ - type: mrr_at_5
1517
+ value: 34.736
1518
+ - type: ndcg_at_1
1519
+ value: 23.724999999999998
1520
+ - type: ndcg_at_10
1521
+ value: 42.617
1522
+ - type: ndcg_at_100
1523
+ value: 48.217999999999996
1524
+ - type: ndcg_at_1000
1525
+ value: 49.309
1526
+ - type: ndcg_at_3
1527
+ value: 34.905
1528
+ - type: ndcg_at_5
1529
+ value: 38.769
1530
+ - type: precision_at_1
1531
+ value: 23.724999999999998
1532
+ - type: precision_at_10
1533
+ value: 6.689
1534
+ - type: precision_at_100
1535
+ value: 0.9480000000000001
1536
+ - type: precision_at_1000
1537
+ value: 0.104
1538
+ - type: precision_at_3
1539
+ value: 14.89
1540
+ - type: precision_at_5
1541
+ value: 10.897
1542
+ - type: recall_at_1
1543
+ value: 23.015
1544
+ - type: recall_at_10
1545
+ value: 64.041
1546
+ - type: recall_at_100
1547
+ value: 89.724
1548
+ - type: recall_at_1000
1549
+ value: 98.00999999999999
1550
+ - type: recall_at_3
1551
+ value: 43.064
1552
+ - type: recall_at_5
1553
+ value: 52.31099999999999
1554
+ - task:
1555
+ type: Classification
1556
+ dataset:
1557
+ type: mteb/mtop_domain
1558
+ name: MTEB MTOPDomainClassification (en)
1559
+ config: en
1560
+ split: test
1561
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1562
+ metrics:
1563
+ - type: accuracy
1564
+ value: 96.49794801641588
1565
+ - type: f1
1566
+ value: 96.28931114498003
1567
+ - task:
1568
+ type: Classification
1569
+ dataset:
1570
+ type: mteb/mtop_intent
1571
+ name: MTEB MTOPIntentClassification (en)
1572
+ config: en
1573
+ split: test
1574
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1575
+ metrics:
1576
+ - type: accuracy
1577
+ value: 82.81121751025992
1578
+ - type: f1
1579
+ value: 63.18740125901853
1580
+ - task:
1581
+ type: Classification
1582
+ dataset:
1583
+ type: mteb/amazon_massive_intent
1584
+ name: MTEB MassiveIntentClassification (en)
1585
+ config: en
1586
+ split: test
1587
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1588
+ metrics:
1589
+ - type: accuracy
1590
+ value: 77.66644250168123
1591
+ - type: f1
1592
+ value: 74.93211186867839
1593
+ - task:
1594
+ type: Classification
1595
+ dataset:
1596
+ type: mteb/amazon_massive_scenario
1597
+ name: MTEB MassiveScenarioClassification (en)
1598
+ config: en
1599
+ split: test
1600
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1601
+ metrics:
1602
+ - type: accuracy
1603
+ value: 81.77202420981843
1604
+ - type: f1
1605
+ value: 81.63681969283554
1606
+ - task:
1607
+ type: Clustering
1608
+ dataset:
1609
+ type: mteb/medrxiv-clustering-p2p
1610
+ name: MTEB MedrxivClusteringP2P
1611
+ config: default
1612
+ split: test
1613
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1614
+ metrics:
1615
+ - type: v_measure
1616
+ value: 34.596687684870645
1617
+ - task:
1618
+ type: Clustering
1619
+ dataset:
1620
+ type: mteb/medrxiv-clustering-s2s
1621
+ name: MTEB MedrxivClusteringS2S
1622
+ config: default
1623
+ split: test
1624
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1625
+ metrics:
1626
+ - type: v_measure
1627
+ value: 32.26965660101405
1628
+ - task:
1629
+ type: Reranking
1630
+ dataset:
1631
+ type: mteb/mind_small
1632
+ name: MTEB MindSmallReranking
1633
+ config: default
1634
+ split: test
1635
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1636
+ metrics:
1637
+ - type: map
1638
+ value: 31.33619694846802
1639
+ - type: mrr
1640
+ value: 32.53719657720334
1641
+ - task:
1642
+ type: Retrieval
1643
+ dataset:
1644
+ type: mteb/nfcorpus
1645
+ name: MTEB NFCorpus
1646
+ config: default
1647
+ split: test
1648
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1649
+ metrics:
1650
+ - type: map_at_1
1651
+ value: 6.0729999999999995
1652
+ - type: map_at_10
1653
+ value: 13.245999999999999
1654
+ - type: map_at_100
1655
+ value: 16.747999999999998
1656
+ - type: map_at_1000
1657
+ value: 18.163
1658
+ - type: map_at_3
1659
+ value: 10.064
1660
+ - type: map_at_5
1661
+ value: 11.513
1662
+ - type: mrr_at_1
1663
+ value: 49.536
1664
+ - type: mrr_at_10
1665
+ value: 58.092
1666
+ - type: mrr_at_100
1667
+ value: 58.752
1668
+ - type: mrr_at_1000
1669
+ value: 58.78
1670
+ - type: mrr_at_3
1671
+ value: 56.398
1672
+ - type: mrr_at_5
1673
+ value: 57.389
1674
+ - type: ndcg_at_1
1675
+ value: 47.059
1676
+ - type: ndcg_at_10
1677
+ value: 35.881
1678
+ - type: ndcg_at_100
1679
+ value: 32.751999999999995
1680
+ - type: ndcg_at_1000
1681
+ value: 41.498000000000005
1682
+ - type: ndcg_at_3
1683
+ value: 42.518
1684
+ - type: ndcg_at_5
1685
+ value: 39.550999999999995
1686
+ - type: precision_at_1
1687
+ value: 49.536
1688
+ - type: precision_at_10
1689
+ value: 26.316
1690
+ - type: precision_at_100
1691
+ value: 8.084
1692
+ - type: precision_at_1000
1693
+ value: 2.081
1694
+ - type: precision_at_3
1695
+ value: 39.938
1696
+ - type: precision_at_5
1697
+ value: 34.056
1698
+ - type: recall_at_1
1699
+ value: 6.0729999999999995
1700
+ - type: recall_at_10
1701
+ value: 16.593
1702
+ - type: recall_at_100
1703
+ value: 32.883
1704
+ - type: recall_at_1000
1705
+ value: 64.654
1706
+ - type: recall_at_3
1707
+ value: 11.174000000000001
1708
+ - type: recall_at_5
1709
+ value: 13.528
1710
+ - task:
1711
+ type: Retrieval
1712
+ dataset:
1713
+ type: mteb/nq
1714
+ name: MTEB NQ
1715
+ config: default
1716
+ split: test
1717
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1718
+ metrics:
1719
+ - type: map_at_1
1720
+ value: 30.043
1721
+ - type: map_at_10
1722
+ value: 45.318999999999996
1723
+ - type: map_at_100
1724
+ value: 46.381
1725
+ - type: map_at_1000
1726
+ value: 46.412
1727
+ - type: map_at_3
1728
+ value: 40.941
1729
+ - type: map_at_5
1730
+ value: 43.662
1731
+ - type: mrr_at_1
1732
+ value: 33.98
1733
+ - type: mrr_at_10
1734
+ value: 47.870000000000005
1735
+ - type: mrr_at_100
1736
+ value: 48.681999999999995
1737
+ - type: mrr_at_1000
1738
+ value: 48.703
1739
+ - type: mrr_at_3
1740
+ value: 44.341
1741
+ - type: mrr_at_5
1742
+ value: 46.547
1743
+ - type: ndcg_at_1
1744
+ value: 33.98
1745
+ - type: ndcg_at_10
1746
+ value: 52.957
1747
+ - type: ndcg_at_100
1748
+ value: 57.434
1749
+ - type: ndcg_at_1000
1750
+ value: 58.103
1751
+ - type: ndcg_at_3
1752
+ value: 44.896
1753
+ - type: ndcg_at_5
1754
+ value: 49.353
1755
+ - type: precision_at_1
1756
+ value: 33.98
1757
+ - type: precision_at_10
1758
+ value: 8.786
1759
+ - type: precision_at_100
1760
+ value: 1.1280000000000001
1761
+ - type: precision_at_1000
1762
+ value: 0.11900000000000001
1763
+ - type: precision_at_3
1764
+ value: 20.577
1765
+ - type: precision_at_5
1766
+ value: 14.942
1767
+ - type: recall_at_1
1768
+ value: 30.043
1769
+ - type: recall_at_10
1770
+ value: 73.593
1771
+ - type: recall_at_100
1772
+ value: 93.026
1773
+ - type: recall_at_1000
1774
+ value: 97.943
1775
+ - type: recall_at_3
1776
+ value: 52.955
1777
+ - type: recall_at_5
1778
+ value: 63.132
1779
+ - task:
1780
+ type: Retrieval
1781
+ dataset:
1782
+ type: mteb/quora
1783
+ name: MTEB QuoraRetrieval
1784
+ config: default
1785
+ split: test
1786
+ revision: None
1787
+ metrics:
1788
+ - type: map_at_1
1789
+ value: 70.808
1790
+ - type: map_at_10
1791
+ value: 84.675
1792
+ - type: map_at_100
1793
+ value: 85.322
1794
+ - type: map_at_1000
1795
+ value: 85.33800000000001
1796
+ - type: map_at_3
1797
+ value: 81.68900000000001
1798
+ - type: map_at_5
1799
+ value: 83.543
1800
+ - type: mrr_at_1
1801
+ value: 81.5
1802
+ - type: mrr_at_10
1803
+ value: 87.59700000000001
1804
+ - type: mrr_at_100
1805
+ value: 87.705
1806
+ - type: mrr_at_1000
1807
+ value: 87.70599999999999
1808
+ - type: mrr_at_3
1809
+ value: 86.607
1810
+ - type: mrr_at_5
1811
+ value: 87.289
1812
+ - type: ndcg_at_1
1813
+ value: 81.51
1814
+ - type: ndcg_at_10
1815
+ value: 88.41799999999999
1816
+ - type: ndcg_at_100
1817
+ value: 89.644
1818
+ - type: ndcg_at_1000
1819
+ value: 89.725
1820
+ - type: ndcg_at_3
1821
+ value: 85.49900000000001
1822
+ - type: ndcg_at_5
1823
+ value: 87.078
1824
+ - type: precision_at_1
1825
+ value: 81.51
1826
+ - type: precision_at_10
1827
+ value: 13.438
1828
+ - type: precision_at_100
1829
+ value: 1.532
1830
+ - type: precision_at_1000
1831
+ value: 0.157
1832
+ - type: precision_at_3
1833
+ value: 37.363
1834
+ - type: precision_at_5
1835
+ value: 24.57
1836
+ - type: recall_at_1
1837
+ value: 70.808
1838
+ - type: recall_at_10
1839
+ value: 95.575
1840
+ - type: recall_at_100
1841
+ value: 99.667
1842
+ - type: recall_at_1000
1843
+ value: 99.98899999999999
1844
+ - type: recall_at_3
1845
+ value: 87.223
1846
+ - type: recall_at_5
1847
+ value: 91.682
1848
+ - task:
1849
+ type: Clustering
1850
+ dataset:
1851
+ type: mteb/reddit-clustering
1852
+ name: MTEB RedditClustering
1853
+ config: default
1854
+ split: test
1855
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1856
+ metrics:
1857
+ - type: v_measure
1858
+ value: 58.614831329137715
1859
+ - task:
1860
+ type: Clustering
1861
+ dataset:
1862
+ type: mteb/reddit-clustering-p2p
1863
+ name: MTEB RedditClusteringP2P
1864
+ config: default
1865
+ split: test
1866
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1867
+ metrics:
1868
+ - type: v_measure
1869
+ value: 66.86580408560826
1870
+ - task:
1871
+ type: Retrieval
1872
+ dataset:
1873
+ type: mteb/scidocs
1874
+ name: MTEB SCIDOCS
1875
+ config: default
1876
+ split: test
1877
+ revision: None
1878
+ metrics:
1879
+ - type: map_at_1
1880
+ value: 5.093
1881
+ - type: map_at_10
1882
+ value: 13.014000000000001
1883
+ - type: map_at_100
1884
+ value: 15.412999999999998
1885
+ - type: map_at_1000
1886
+ value: 15.756999999999998
1887
+ - type: map_at_3
1888
+ value: 9.216000000000001
1889
+ - type: map_at_5
1890
+ value: 11.036999999999999
1891
+ - type: mrr_at_1
1892
+ value: 25.1
1893
+ - type: mrr_at_10
1894
+ value: 37.133
1895
+ - type: mrr_at_100
1896
+ value: 38.165
1897
+ - type: mrr_at_1000
1898
+ value: 38.198
1899
+ - type: mrr_at_3
1900
+ value: 33.217
1901
+ - type: mrr_at_5
1902
+ value: 35.732
1903
+ - type: ndcg_at_1
1904
+ value: 25.1
1905
+ - type: ndcg_at_10
1906
+ value: 21.918000000000003
1907
+ - type: ndcg_at_100
1908
+ value: 30.983
1909
+ - type: ndcg_at_1000
1910
+ value: 36.629
1911
+ - type: ndcg_at_3
1912
+ value: 20.544999999999998
1913
+ - type: ndcg_at_5
1914
+ value: 18.192
1915
+ - type: precision_at_1
1916
+ value: 25.1
1917
+ - type: precision_at_10
1918
+ value: 11.44
1919
+ - type: precision_at_100
1920
+ value: 2.459
1921
+ - type: precision_at_1000
1922
+ value: 0.381
1923
+ - type: precision_at_3
1924
+ value: 19.267
1925
+ - type: precision_at_5
1926
+ value: 16.16
1927
+ - type: recall_at_1
1928
+ value: 5.093
1929
+ - type: recall_at_10
1930
+ value: 23.215
1931
+ - type: recall_at_100
1932
+ value: 49.902
1933
+ - type: recall_at_1000
1934
+ value: 77.403
1935
+ - type: recall_at_3
1936
+ value: 11.733
1937
+ - type: recall_at_5
1938
+ value: 16.372999999999998
1939
+ - task:
1940
+ type: STS
1941
+ dataset:
1942
+ type: mteb/sickr-sts
1943
+ name: MTEB SICK-R
1944
+ config: default
1945
+ split: test
1946
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1947
+ metrics:
1948
+ - type: cos_sim_pearson
1949
+ value: 82.9365442977452
1950
+ - type: cos_sim_spearman
1951
+ value: 79.36960687383745
1952
+ - type: euclidean_pearson
1953
+ value: 79.6045204840714
1954
+ - type: euclidean_spearman
1955
+ value: 79.26382712751337
1956
+ - type: manhattan_pearson
1957
+ value: 79.4805084789529
1958
+ - type: manhattan_spearman
1959
+ value: 79.21847863209523
1960
+ - task:
1961
+ type: STS
1962
+ dataset:
1963
+ type: mteb/sts12-sts
1964
+ name: MTEB STS12
1965
+ config: default
1966
+ split: test
1967
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1968
+ metrics:
1969
+ - type: cos_sim_pearson
1970
+ value: 83.27906192961453
1971
+ - type: cos_sim_spearman
1972
+ value: 74.38364712099211
1973
+ - type: euclidean_pearson
1974
+ value: 78.54358927241223
1975
+ - type: euclidean_spearman
1976
+ value: 74.22185560806376
1977
+ - type: manhattan_pearson
1978
+ value: 78.50904327377751
1979
+ - type: manhattan_spearman
1980
+ value: 74.2627500781748
1981
+ - task:
1982
+ type: STS
1983
+ dataset:
1984
+ type: mteb/sts13-sts
1985
+ name: MTEB STS13
1986
+ config: default
1987
+ split: test
1988
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1989
+ metrics:
1990
+ - type: cos_sim_pearson
1991
+ value: 84.66863742649639
1992
+ - type: cos_sim_spearman
1993
+ value: 84.70630905216271
1994
+ - type: euclidean_pearson
1995
+ value: 84.64498334705334
1996
+ - type: euclidean_spearman
1997
+ value: 84.87204770690148
1998
+ - type: manhattan_pearson
1999
+ value: 84.65774227976077
2000
+ - type: manhattan_spearman
2001
+ value: 84.91251851797985
2002
+ - task:
2003
+ type: STS
2004
+ dataset:
2005
+ type: mteb/sts14-sts
2006
+ name: MTEB STS14
2007
+ config: default
2008
+ split: test
2009
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2010
+ metrics:
2011
+ - type: cos_sim_pearson
2012
+ value: 83.1577763924467
2013
+ - type: cos_sim_spearman
2014
+ value: 80.10314039230198
2015
+ - type: euclidean_pearson
2016
+ value: 81.51346991046043
2017
+ - type: euclidean_spearman
2018
+ value: 80.08678485109435
2019
+ - type: manhattan_pearson
2020
+ value: 81.57058914661894
2021
+ - type: manhattan_spearman
2022
+ value: 80.1516230725106
2023
+ - task:
2024
+ type: STS
2025
+ dataset:
2026
+ type: mteb/sts15-sts
2027
+ name: MTEB STS15
2028
+ config: default
2029
+ split: test
2030
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2031
+ metrics:
2032
+ - type: cos_sim_pearson
2033
+ value: 86.40310839662533
2034
+ - type: cos_sim_spearman
2035
+ value: 87.16293477217867
2036
+ - type: euclidean_pearson
2037
+ value: 86.50688711184775
2038
+ - type: euclidean_spearman
2039
+ value: 87.08651444923031
2040
+ - type: manhattan_pearson
2041
+ value: 86.54674677557857
2042
+ - type: manhattan_spearman
2043
+ value: 87.15079017870971
2044
+ - task:
2045
+ type: STS
2046
+ dataset:
2047
+ type: mteb/sts16-sts
2048
+ name: MTEB STS16
2049
+ config: default
2050
+ split: test
2051
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2052
+ metrics:
2053
+ - type: cos_sim_pearson
2054
+ value: 84.32886275207817
2055
+ - type: cos_sim_spearman
2056
+ value: 85.0190460590732
2057
+ - type: euclidean_pearson
2058
+ value: 84.42553652784679
2059
+ - type: euclidean_spearman
2060
+ value: 85.20027364279328
2061
+ - type: manhattan_pearson
2062
+ value: 84.42926246281078
2063
+ - type: manhattan_spearman
2064
+ value: 85.20187419804306
2065
+ - task:
2066
+ type: STS
2067
+ dataset:
2068
+ type: mteb/sts17-crosslingual-sts
2069
+ name: MTEB STS17 (en-en)
2070
+ config: en-en
2071
+ split: test
2072
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2073
+ metrics:
2074
+ - type: cos_sim_pearson
2075
+ value: 90.76732216967812
2076
+ - type: cos_sim_spearman
2077
+ value: 90.63701653633909
2078
+ - type: euclidean_pearson
2079
+ value: 90.26678186114682
2080
+ - type: euclidean_spearman
2081
+ value: 90.67288073455427
2082
+ - type: manhattan_pearson
2083
+ value: 90.20772020584582
2084
+ - type: manhattan_spearman
2085
+ value: 90.60764863983702
2086
+ - task:
2087
+ type: STS
2088
+ dataset:
2089
+ type: mteb/sts22-crosslingual-sts
2090
+ name: MTEB STS22 (en)
2091
+ config: en
2092
+ split: test
2093
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2094
+ metrics:
2095
+ - type: cos_sim_pearson
2096
+ value: 69.09280387698125
2097
+ - type: cos_sim_spearman
2098
+ value: 68.62743151172162
2099
+ - type: euclidean_pearson
2100
+ value: 69.89386398104689
2101
+ - type: euclidean_spearman
2102
+ value: 68.71191066733556
2103
+ - type: manhattan_pearson
2104
+ value: 69.92516500604872
2105
+ - type: manhattan_spearman
2106
+ value: 68.80452846992576
2107
+ - task:
2108
+ type: STS
2109
+ dataset:
2110
+ type: mteb/stsbenchmark-sts
2111
+ name: MTEB STSBenchmark
2112
+ config: default
2113
+ split: test
2114
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2115
+ metrics:
2116
+ - type: cos_sim_pearson
2117
+ value: 86.13178592019887
2118
+ - type: cos_sim_spearman
2119
+ value: 86.03947178806887
2120
+ - type: euclidean_pearson
2121
+ value: 85.87029414285313
2122
+ - type: euclidean_spearman
2123
+ value: 86.04960843306998
2124
+ - type: manhattan_pearson
2125
+ value: 85.92946858580146
2126
+ - type: manhattan_spearman
2127
+ value: 86.12575341860442
2128
+ - task:
2129
+ type: Reranking
2130
+ dataset:
2131
+ type: mteb/scidocs-reranking
2132
+ name: MTEB SciDocsRR
2133
+ config: default
2134
+ split: test
2135
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2136
+ metrics:
2137
+ - type: map
2138
+ value: 85.16657063002837
2139
+ - type: mrr
2140
+ value: 95.73671063867141
2141
+ - task:
2142
+ type: Retrieval
2143
+ dataset:
2144
+ type: mteb/scifact
2145
+ name: MTEB SciFact
2146
+ config: default
2147
+ split: test
2148
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2149
+ metrics:
2150
+ - type: map_at_1
2151
+ value: 63.510999999999996
2152
+ - type: map_at_10
2153
+ value: 72.76899999999999
2154
+ - type: map_at_100
2155
+ value: 73.303
2156
+ - type: map_at_1000
2157
+ value: 73.32499999999999
2158
+ - type: map_at_3
2159
+ value: 70.514
2160
+ - type: map_at_5
2161
+ value: 71.929
2162
+ - type: mrr_at_1
2163
+ value: 66.333
2164
+ - type: mrr_at_10
2165
+ value: 73.75
2166
+ - type: mrr_at_100
2167
+ value: 74.119
2168
+ - type: mrr_at_1000
2169
+ value: 74.138
2170
+ - type: mrr_at_3
2171
+ value: 72.222
2172
+ - type: mrr_at_5
2173
+ value: 73.122
2174
+ - type: ndcg_at_1
2175
+ value: 66.333
2176
+ - type: ndcg_at_10
2177
+ value: 76.774
2178
+ - type: ndcg_at_100
2179
+ value: 78.78500000000001
2180
+ - type: ndcg_at_1000
2181
+ value: 79.254
2182
+ - type: ndcg_at_3
2183
+ value: 73.088
2184
+ - type: ndcg_at_5
2185
+ value: 75.002
2186
+ - type: precision_at_1
2187
+ value: 66.333
2188
+ - type: precision_at_10
2189
+ value: 9.833
2190
+ - type: precision_at_100
2191
+ value: 1.093
2192
+ - type: precision_at_1000
2193
+ value: 0.11299999999999999
2194
+ - type: precision_at_3
2195
+ value: 28.222
2196
+ - type: precision_at_5
2197
+ value: 18.333
2198
+ - type: recall_at_1
2199
+ value: 63.510999999999996
2200
+ - type: recall_at_10
2201
+ value: 87.98899999999999
2202
+ - type: recall_at_100
2203
+ value: 96.5
2204
+ - type: recall_at_1000
2205
+ value: 100.0
2206
+ - type: recall_at_3
2207
+ value: 77.86699999999999
2208
+ - type: recall_at_5
2209
+ value: 82.73899999999999
2210
+ - task:
2211
+ type: PairClassification
2212
+ dataset:
2213
+ type: mteb/sprintduplicatequestions-pairclassification
2214
+ name: MTEB SprintDuplicateQuestions
2215
+ config: default
2216
+ split: test
2217
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2218
+ metrics:
2219
+ - type: cos_sim_accuracy
2220
+ value: 99.78514851485149
2221
+ - type: cos_sim_ap
2222
+ value: 94.94214383862038
2223
+ - type: cos_sim_f1
2224
+ value: 89.02255639097744
2225
+ - type: cos_sim_precision
2226
+ value: 89.2462311557789
2227
+ - type: cos_sim_recall
2228
+ value: 88.8
2229
+ - type: dot_accuracy
2230
+ value: 99.78217821782178
2231
+ - type: dot_ap
2232
+ value: 94.69965247836805
2233
+ - type: dot_f1
2234
+ value: 88.78695208970439
2235
+ - type: dot_precision
2236
+ value: 90.54054054054053
2237
+ - type: dot_recall
2238
+ value: 87.1
2239
+ - type: euclidean_accuracy
2240
+ value: 99.78118811881188
2241
+ - type: euclidean_ap
2242
+ value: 94.9865187695411
2243
+ - type: euclidean_f1
2244
+ value: 88.99950223992036
2245
+ - type: euclidean_precision
2246
+ value: 88.60257680872151
2247
+ - type: euclidean_recall
2248
+ value: 89.4
2249
+ - type: manhattan_accuracy
2250
+ value: 99.78811881188119
2251
+ - type: manhattan_ap
2252
+ value: 95.0021236766459
2253
+ - type: manhattan_f1
2254
+ value: 89.12071535022356
2255
+ - type: manhattan_precision
2256
+ value: 88.54886475814413
2257
+ - type: manhattan_recall
2258
+ value: 89.7
2259
+ - type: max_accuracy
2260
+ value: 99.78811881188119
2261
+ - type: max_ap
2262
+ value: 95.0021236766459
2263
+ - type: max_f1
2264
+ value: 89.12071535022356
2265
+ - task:
2266
+ type: Clustering
2267
+ dataset:
2268
+ type: mteb/stackexchange-clustering
2269
+ name: MTEB StackExchangeClustering
2270
+ config: default
2271
+ split: test
2272
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2273
+ metrics:
2274
+ - type: v_measure
2275
+ value: 68.93190546593995
2276
+ - task:
2277
+ type: Clustering
2278
+ dataset:
2279
+ type: mteb/stackexchange-clustering-p2p
2280
+ name: MTEB StackExchangeClusteringP2P
2281
+ config: default
2282
+ split: test
2283
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2284
+ metrics:
2285
+ - type: v_measure
2286
+ value: 37.602808534760655
2287
+ - task:
2288
+ type: Reranking
2289
+ dataset:
2290
+ type: mteb/stackoverflowdupquestions-reranking
2291
+ name: MTEB StackOverflowDupQuestions
2292
+ config: default
2293
+ split: test
2294
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2295
+ metrics:
2296
+ - type: map
2297
+ value: 52.29214480978073
2298
+ - type: mrr
2299
+ value: 53.123169722434426
2300
+ - task:
2301
+ type: Summarization
2302
+ dataset:
2303
+ type: mteb/summeval
2304
+ name: MTEB SummEval
2305
+ config: default
2306
+ split: test
2307
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2308
+ metrics:
2309
+ - type: cos_sim_pearson
2310
+ value: 30.967800769650022
2311
+ - type: cos_sim_spearman
2312
+ value: 31.168490040206926
2313
+ - type: dot_pearson
2314
+ value: 30.888603021128553
2315
+ - type: dot_spearman
2316
+ value: 31.028241262520385
2317
+ - task:
2318
+ type: Retrieval
2319
+ dataset:
2320
+ type: mteb/trec-covid
2321
+ name: MTEB TRECCOVID
2322
+ config: default
2323
+ split: test
2324
+ revision: None
2325
+ metrics:
2326
+ - type: map_at_1
2327
+ value: 0.22300000000000003
2328
+ - type: map_at_10
2329
+ value: 1.781
2330
+ - type: map_at_100
2331
+ value: 9.905999999999999
2332
+ - type: map_at_1000
2333
+ value: 23.455000000000002
2334
+ - type: map_at_3
2335
+ value: 0.569
2336
+ - type: map_at_5
2337
+ value: 0.918
2338
+ - type: mrr_at_1
2339
+ value: 84.0
2340
+ - type: mrr_at_10
2341
+ value: 91.067
2342
+ - type: mrr_at_100
2343
+ value: 91.067
2344
+ - type: mrr_at_1000
2345
+ value: 91.067
2346
+ - type: mrr_at_3
2347
+ value: 90.667
2348
+ - type: mrr_at_5
2349
+ value: 91.067
2350
+ - type: ndcg_at_1
2351
+ value: 78.0
2352
+ - type: ndcg_at_10
2353
+ value: 73.13499999999999
2354
+ - type: ndcg_at_100
2355
+ value: 55.32
2356
+ - type: ndcg_at_1000
2357
+ value: 49.532
2358
+ - type: ndcg_at_3
2359
+ value: 73.715
2360
+ - type: ndcg_at_5
2361
+ value: 72.74199999999999
2362
+ - type: precision_at_1
2363
+ value: 84.0
2364
+ - type: precision_at_10
2365
+ value: 78.8
2366
+ - type: precision_at_100
2367
+ value: 56.32
2368
+ - type: precision_at_1000
2369
+ value: 21.504
2370
+ - type: precision_at_3
2371
+ value: 77.333
2372
+ - type: precision_at_5
2373
+ value: 78.0
2374
+ - type: recall_at_1
2375
+ value: 0.22300000000000003
2376
+ - type: recall_at_10
2377
+ value: 2.049
2378
+ - type: recall_at_100
2379
+ value: 13.553
2380
+ - type: recall_at_1000
2381
+ value: 46.367999999999995
2382
+ - type: recall_at_3
2383
+ value: 0.604
2384
+ - type: recall_at_5
2385
+ value: 1.015
2386
+ - task:
2387
+ type: Retrieval
2388
+ dataset:
2389
+ type: mteb/touche2020
2390
+ name: MTEB Touche2020
2391
+ config: default
2392
+ split: test
2393
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2394
+ metrics:
2395
+ - type: map_at_1
2396
+ value: 3.0380000000000003
2397
+ - type: map_at_10
2398
+ value: 10.188
2399
+ - type: map_at_100
2400
+ value: 16.395
2401
+ - type: map_at_1000
2402
+ value: 18.024
2403
+ - type: map_at_3
2404
+ value: 6.236
2405
+ - type: map_at_5
2406
+ value: 7.276000000000001
2407
+ - type: mrr_at_1
2408
+ value: 34.694
2409
+ - type: mrr_at_10
2410
+ value: 46.292
2411
+ - type: mrr_at_100
2412
+ value: 47.446
2413
+ - type: mrr_at_1000
2414
+ value: 47.446
2415
+ - type: mrr_at_3
2416
+ value: 41.156
2417
+ - type: mrr_at_5
2418
+ value: 44.32
2419
+ - type: ndcg_at_1
2420
+ value: 32.653
2421
+ - type: ndcg_at_10
2422
+ value: 25.219
2423
+ - type: ndcg_at_100
2424
+ value: 37.802
2425
+ - type: ndcg_at_1000
2426
+ value: 49.274
2427
+ - type: ndcg_at_3
2428
+ value: 28.605999999999998
2429
+ - type: ndcg_at_5
2430
+ value: 26.21
2431
+ - type: precision_at_1
2432
+ value: 34.694
2433
+ - type: precision_at_10
2434
+ value: 21.837
2435
+ - type: precision_at_100
2436
+ value: 7.776
2437
+ - type: precision_at_1000
2438
+ value: 1.522
2439
+ - type: precision_at_3
2440
+ value: 28.571
2441
+ - type: precision_at_5
2442
+ value: 25.306
2443
+ - type: recall_at_1
2444
+ value: 3.0380000000000003
2445
+ - type: recall_at_10
2446
+ value: 16.298000000000002
2447
+ - type: recall_at_100
2448
+ value: 48.712
2449
+ - type: recall_at_1000
2450
+ value: 83.16799999999999
2451
+ - type: recall_at_3
2452
+ value: 7.265000000000001
2453
+ - type: recall_at_5
2454
+ value: 9.551
2455
+ - task:
2456
+ type: Classification
2457
+ dataset:
2458
+ type: mteb/toxic_conversations_50k
2459
+ name: MTEB ToxicConversationsClassification
2460
+ config: default
2461
+ split: test
2462
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2463
+ metrics:
2464
+ - type: accuracy
2465
+ value: 83.978
2466
+ - type: ap
2467
+ value: 24.751887949330015
2468
+ - type: f1
2469
+ value: 66.8685134049279
2470
+ - task:
2471
+ type: Classification
2472
+ dataset:
2473
+ type: mteb/tweet_sentiment_extraction
2474
+ name: MTEB TweetSentimentExtractionClassification
2475
+ config: default
2476
+ split: test
2477
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2478
+ metrics:
2479
+ - type: accuracy
2480
+ value: 61.573288058856825
2481
+ - type: f1
2482
+ value: 61.973261751726604
2483
+ - task:
2484
+ type: Clustering
2485
+ dataset:
2486
+ type: mteb/twentynewsgroups-clustering
2487
+ name: MTEB TwentyNewsgroupsClustering
2488
+ config: default
2489
+ split: test
2490
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2491
+ metrics:
2492
+ - type: v_measure
2493
+ value: 48.75483298792469
2494
+ - task:
2495
+ type: PairClassification
2496
+ dataset:
2497
+ type: mteb/twittersemeval2015-pairclassification
2498
+ name: MTEB TwitterSemEval2015
2499
+ config: default
2500
+ split: test
2501
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2502
+ metrics:
2503
+ - type: cos_sim_accuracy
2504
+ value: 86.36824223639506
2505
+ - type: cos_sim_ap
2506
+ value: 75.53126388573047
2507
+ - type: cos_sim_f1
2508
+ value: 67.9912831688245
2509
+ - type: cos_sim_precision
2510
+ value: 66.11817501869858
2511
+ - type: cos_sim_recall
2512
+ value: 69.9736147757256
2513
+ - type: dot_accuracy
2514
+ value: 86.39804494248078
2515
+ - type: dot_ap
2516
+ value: 75.27598891718046
2517
+ - type: dot_f1
2518
+ value: 67.91146284159763
2519
+ - type: dot_precision
2520
+ value: 63.90505003490807
2521
+ - type: dot_recall
2522
+ value: 72.45382585751979
2523
+ - type: euclidean_accuracy
2524
+ value: 86.36228169517793
2525
+ - type: euclidean_ap
2526
+ value: 75.51438087434647
2527
+ - type: euclidean_f1
2528
+ value: 68.02370523061066
2529
+ - type: euclidean_precision
2530
+ value: 66.46525679758308
2531
+ - type: euclidean_recall
2532
+ value: 69.65699208443272
2533
+ - type: manhattan_accuracy
2534
+ value: 86.46361089586935
2535
+ - type: manhattan_ap
2536
+ value: 75.50800785730111
2537
+ - type: manhattan_f1
2538
+ value: 67.9220437187253
2539
+ - type: manhattan_precision
2540
+ value: 67.79705573080967
2541
+ - type: manhattan_recall
2542
+ value: 68.04749340369392
2543
+ - type: max_accuracy
2544
+ value: 86.46361089586935
2545
+ - type: max_ap
2546
+ value: 75.53126388573047
2547
+ - type: max_f1
2548
+ value: 68.02370523061066
2549
+ - task:
2550
+ type: PairClassification
2551
+ dataset:
2552
+ type: mteb/twitterurlcorpus-pairclassification
2553
+ name: MTEB TwitterURLCorpus
2554
+ config: default
2555
+ split: test
2556
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2557
+ metrics:
2558
+ - type: cos_sim_accuracy
2559
+ value: 88.80350836341057
2560
+ - type: cos_sim_ap
2561
+ value: 85.51101933260743
2562
+ - type: cos_sim_f1
2563
+ value: 77.9152271629704
2564
+ - type: cos_sim_precision
2565
+ value: 75.27815662910056
2566
+ - type: cos_sim_recall
2567
+ value: 80.74376347397599
2568
+ - type: dot_accuracy
2569
+ value: 88.84425815966158
2570
+ - type: dot_ap
2571
+ value: 85.49726945962519
2572
+ - type: dot_f1
2573
+ value: 77.94445269567801
2574
+ - type: dot_precision
2575
+ value: 75.27251864601261
2576
+ - type: dot_recall
2577
+ value: 80.81305820757623
2578
+ - type: euclidean_accuracy
2579
+ value: 88.80350836341057
2580
+ - type: euclidean_ap
2581
+ value: 85.4882880790211
2582
+ - type: euclidean_f1
2583
+ value: 77.87063284615103
2584
+ - type: euclidean_precision
2585
+ value: 74.61022927689595
2586
+ - type: euclidean_recall
2587
+ value: 81.42901139513397
2588
+ - type: manhattan_accuracy
2589
+ value: 88.7161873714441
2590
+ - type: manhattan_ap
2591
+ value: 85.45753871906821
2592
+ - type: manhattan_f1
2593
+ value: 77.8686401480111
2594
+ - type: manhattan_precision
2595
+ value: 74.95903683123174
2596
+ - type: manhattan_recall
2597
+ value: 81.01324299353249
2598
+ - type: max_accuracy
2599
+ value: 88.84425815966158
2600
+ - type: max_ap
2601
+ value: 85.51101933260743
2602
+ - type: max_f1
2603
+ value: 77.94445269567801
2604
  ---
2605
+
2606
+ <!-- **English** | [中文](./README_zh.md) -->
2607
+
2608
+ # gte-base-en-v1.5
2609
+
2610
+ We introduce `gte-v1.5` series, upgraded `gte` embeddings that support the context length of up to **8192**.
2611
+ The models are built upon the `transformer++` encoder [backbone](https://huggingface.co/Alibaba-NLP/new-impl) (BERT + RoPE + GLU).
2612
+
2613
+ The `gte-v1.5` series achieve state-of-the-art scores on the MTEB benchmark within the same model size category and prodvide competitive on the LoCo long-context retrieval tests (refer to [Evaluation](#evaluation)).
2614
+
2615
+ We also present the [`gte-Qwen1.5-7B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct).
2616
+
2617
+ <!-- Provide a longer summary of what this model is. -->
2618
+
2619
+ - **Developed by:** Institute for Intelligent Computing, Alibaba Group
2620
+ - **Model type:** Text Embeddings
2621
+ - **Paper:** Coming soon.
2622
+
2623
+ <!-- - **Demo [optional]:** [More Information Needed] -->
2624
+
2625
+ ### Model list
2626
+
2627
+ | Models | Language | Model Size | Max Seq. Length | Dimension | MTEB-en | LoCo |
2628
+ |:-----: | :-----: |:-----: |:-----: |:-----: | :-----: | :-----: |
2629
+ |[`gte-Qwen1.5-7B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct)| English | 7720 | 32768 | 4096 | 67.34 | 87.57 |
2630
+ |[`gte-large-en-v1.5`](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | English | 409 | 8192 | 1024 | 65.39 | 86.71 |
2631
+ |[`gte-base-en-v1.5`](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | English | 137 | 8192 | 768 | 64.11 | 87.44 |
2632
+
2633
+
2634
+ ## How to Get Started with the Model
2635
+
2636
+ Use the code below to get started with the model.
2637
+
2638
+ ```python
2639
+ import torch.nn.functional as F
2640
+ from transformers import AutoModel, AutoTokenizer
2641
+
2642
+ input_texts = [
2643
+ "what is the capital of China?",
2644
+ "how to implement quick sort in python?",
2645
+ "Beijing",
2646
+ "sorting algorithms"
2647
+ ]
2648
+
2649
+ model_path = 'Alibaba-NLP/gte-base-en-v1.5'
2650
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
2651
+ model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
2652
+
2653
+ # Tokenize the input texts
2654
+ batch_dict = tokenizer(input_texts, max_length=8192, padding=True, truncation=True, return_tensors='pt')
2655
+
2656
+ outputs = model(**batch_dict)
2657
+ embeddings = outputs.last_hidden_state[:, 0]
2658
+
2659
+ # (Optionally) normalize embeddings
2660
+ embeddings = F.normalize(embeddings, p=2, dim=1)
2661
+ scores = (embeddings[:1] @ embeddings[1:].T) * 100
2662
+ print(scores.tolist())
2663
+ ```
2664
+
2665
+ **It is recommended to install xformers and enable unpadding for acceleration, refer to [enable-unpadding-and-xformers](https://huggingface.co/Alibaba-NLP/test-impl#recommendation-enable-unpadding-and-acceleration-with-xformers).**
2666
+
2667
+
2668
+ Use with sentence-transformers:
2669
+
2670
+ ```python
2671
+ from sentence_transformers import SentenceTransformer
2672
+ from sentence_transformers.util import cos_sim
2673
+
2674
+ sentences = ['That is a happy person', 'That is a very happy person']
2675
+
2676
+ model = SentenceTransformer('Alibaba-NLP/gte-base-en-v1.5')
2677
+ embeddings = model.encode(sentences)
2678
+ print(cos_sim(embeddings[0], embeddings[1]))
2679
+ ```
2680
+
2681
+ ## Training Details
2682
+
2683
+ ### Training Data
2684
+
2685
+ - Masked language modeling (MLM): `c4-en`
2686
+ - Weak-supervised contrastive (WSC) pre-training: GTE pre-training data
2687
+ - Supervised contrastive fine-tuning: GTE fine-tuning data
2688
+
2689
+ ### Training Procedure
2690
+
2691
+ - MLM-2048: lr 5e-4, mlm_probability 0.3, batch_size 4096, num_steps 70000, rope_base 10000
2692
+ - MLM-8192: lr 5e-5, mlm_probability 0.3, batch_size 1024, num_steps 20000, rope_base 500000
2693
+ - WSC: max_len 512, lr 2e-4, batch_size 32768, num_steps 100000
2694
+ - Fine-tuning: TODO
2695
+
2696
+
2697
+ ## Evaluation
2698
+
2699
+
2700
+ ### MTEB
2701
+
2702
+ The gte results setting: `mteb==1.2.0, fp16 auto mix precision, max_length=8192`, and set ntk scaling factor to 2 (equivalent to rope_base * 2).
2703
+
2704
+ | Model Name | Param Size (M) | Dimension | Sequence Length | Average (56) | Class. (12) | Clust. (11) | Pair Class. (3) | Reran. (4) | Retr. (15) | STS (10) | Summ. (1) |
2705
+ |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
2706
+ | [**gte-large-en-v1.5**](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 409 | 1024 | 8192 | **65.39** | 77.75 | 47.95 | 84.63 | 58.50 | 57.91 | 81.43 | 30.91 |
2707
+ | [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 335 | 1024 | 512 | 64.68 | 75.64 | 46.71 | 87.2 | 60.11 | 54.39 | 85 | 32.71 |
2708
+ | [multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) | 560 | 1024 | 514 | 64.41 | 77.56 | 47.1 | 86.19 | 58.58 | 52.47 | 84.78 | 30.39 |
2709
+ | [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5)| 335 | 1024 | 512 | 64.23 | 75.97 | 46.08 | 87.12 | 60.03 | 54.29 | 83.11 | 31.61 |
2710
+ | [**gte-base-en-v1.5**](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | 137 | 768 | 8192 | **64.11** | 77.17 | 46.82 | 85.33 | 57.66 | 54.09 | 81.97 | 31.17 |
2711
+ | [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)| 109 | 768 | 512 | 63.55 | 75.53 | 45.77 | 86.55 | 58.86 | 53.25 | 82.4 | 31.07 |
2712
+
2713
+
2714
+ ### LoCo
2715
+
2716
+ | Model Name | Dimension | Sequence Length | Average (5) | QsmsumRetrieval | SummScreenRetrieval | QasperAbastractRetrieval | QasperTitleRetrieval | GovReportRetrieval |
2717
+ |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
2718
+ | [gte-qwen1.5-7b](https://huggingface.co/Alibaba-NLP/gte-qwen1.5-7b) | 4096 | 32768 | 87.57 | 49.37 | 93.10 | 99.67 | 97.54 | 98.21 |
2719
+ | [gte-large-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-v1.5) |1024 | 8192 | 86.71 | 44.55 | 92.61 | 99.82 | 97.81 | 98.74 |
2720
+ | [gte-base-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-v1.5) | 768 | 8192 | 87.44 | 49.91 | 91.78 | 99.82 | 97.13 | 98.58 |
2721
+
2722
+
2723
+
2724
+ ## Citation [TODO]
2725
+
2726
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
2727
+
2728
+ **BibTeX:**
2729
+
2730
+ [More Information Needed]
2731
+
2732
+ **APA:**
2733
+
2734
+ [More Information Needed]