Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,2734 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- gte
|
5 |
+
- mteb
|
6 |
license: apache-2.0
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
model-index:
|
10 |
+
- name: gte-base-en-v1.5
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: Classification
|
14 |
+
dataset:
|
15 |
+
type: mteb/amazon_counterfactual
|
16 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
17 |
+
config: en
|
18 |
+
split: test
|
19 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
20 |
+
metrics:
|
21 |
+
- type: accuracy
|
22 |
+
value: 74.7910447761194
|
23 |
+
- type: ap
|
24 |
+
value: 37.053785713650626
|
25 |
+
- type: f1
|
26 |
+
value: 68.51101510998551
|
27 |
+
- task:
|
28 |
+
type: Classification
|
29 |
+
dataset:
|
30 |
+
type: mteb/amazon_polarity
|
31 |
+
name: MTEB AmazonPolarityClassification
|
32 |
+
config: default
|
33 |
+
split: test
|
34 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
35 |
+
metrics:
|
36 |
+
- type: accuracy
|
37 |
+
value: 93.016875
|
38 |
+
- type: ap
|
39 |
+
value: 89.17750268426342
|
40 |
+
- type: f1
|
41 |
+
value: 92.9970977240524
|
42 |
+
- task:
|
43 |
+
type: Classification
|
44 |
+
dataset:
|
45 |
+
type: mteb/amazon_reviews_multi
|
46 |
+
name: MTEB AmazonReviewsClassification (en)
|
47 |
+
config: en
|
48 |
+
split: test
|
49 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
50 |
+
metrics:
|
51 |
+
- type: accuracy
|
52 |
+
value: 53.312000000000005
|
53 |
+
- type: f1
|
54 |
+
value: 52.98175784163017
|
55 |
+
- task:
|
56 |
+
type: Retrieval
|
57 |
+
dataset:
|
58 |
+
type: mteb/arguana
|
59 |
+
name: MTEB ArguAna
|
60 |
+
config: default
|
61 |
+
split: test
|
62 |
+
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
|
63 |
+
metrics:
|
64 |
+
- type: map_at_1
|
65 |
+
value: 38.193
|
66 |
+
- type: map_at_10
|
67 |
+
value: 54.848
|
68 |
+
- type: map_at_100
|
69 |
+
value: 55.388000000000005
|
70 |
+
- type: map_at_1000
|
71 |
+
value: 55.388999999999996
|
72 |
+
- type: map_at_3
|
73 |
+
value: 50.427
|
74 |
+
- type: map_at_5
|
75 |
+
value: 53.105000000000004
|
76 |
+
- type: mrr_at_1
|
77 |
+
value: 39.047
|
78 |
+
- type: mrr_at_10
|
79 |
+
value: 55.153
|
80 |
+
- type: mrr_at_100
|
81 |
+
value: 55.686
|
82 |
+
- type: mrr_at_1000
|
83 |
+
value: 55.688
|
84 |
+
- type: mrr_at_3
|
85 |
+
value: 50.676
|
86 |
+
- type: mrr_at_5
|
87 |
+
value: 53.417
|
88 |
+
- type: ndcg_at_1
|
89 |
+
value: 38.193
|
90 |
+
- type: ndcg_at_10
|
91 |
+
value: 63.486
|
92 |
+
- type: ndcg_at_100
|
93 |
+
value: 65.58
|
94 |
+
- type: ndcg_at_1000
|
95 |
+
value: 65.61
|
96 |
+
- type: ndcg_at_3
|
97 |
+
value: 54.494
|
98 |
+
- type: ndcg_at_5
|
99 |
+
value: 59.339
|
100 |
+
- type: precision_at_1
|
101 |
+
value: 38.193
|
102 |
+
- type: precision_at_10
|
103 |
+
value: 9.075
|
104 |
+
- type: precision_at_100
|
105 |
+
value: 0.9939999999999999
|
106 |
+
- type: precision_at_1000
|
107 |
+
value: 0.1
|
108 |
+
- type: precision_at_3
|
109 |
+
value: 22.096
|
110 |
+
- type: precision_at_5
|
111 |
+
value: 15.619
|
112 |
+
- type: recall_at_1
|
113 |
+
value: 38.193
|
114 |
+
- type: recall_at_10
|
115 |
+
value: 90.754
|
116 |
+
- type: recall_at_100
|
117 |
+
value: 99.431
|
118 |
+
- type: recall_at_1000
|
119 |
+
value: 99.644
|
120 |
+
- type: recall_at_3
|
121 |
+
value: 66.28699999999999
|
122 |
+
- type: recall_at_5
|
123 |
+
value: 78.094
|
124 |
+
- task:
|
125 |
+
type: Clustering
|
126 |
+
dataset:
|
127 |
+
type: mteb/arxiv-clustering-p2p
|
128 |
+
name: MTEB ArxivClusteringP2P
|
129 |
+
config: default
|
130 |
+
split: test
|
131 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
132 |
+
metrics:
|
133 |
+
- type: v_measure
|
134 |
+
value: 47.508221208908964
|
135 |
+
- task:
|
136 |
+
type: Clustering
|
137 |
+
dataset:
|
138 |
+
type: mteb/arxiv-clustering-s2s
|
139 |
+
name: MTEB ArxivClusteringS2S
|
140 |
+
config: default
|
141 |
+
split: test
|
142 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
143 |
+
metrics:
|
144 |
+
- type: v_measure
|
145 |
+
value: 42.04668382560096
|
146 |
+
- task:
|
147 |
+
type: Reranking
|
148 |
+
dataset:
|
149 |
+
type: mteb/askubuntudupquestions-reranking
|
150 |
+
name: MTEB AskUbuntuDupQuestions
|
151 |
+
config: default
|
152 |
+
split: test
|
153 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
154 |
+
metrics:
|
155 |
+
- type: map
|
156 |
+
value: 61.828759903716815
|
157 |
+
- type: mrr
|
158 |
+
value: 74.37343358395991
|
159 |
+
- task:
|
160 |
+
type: STS
|
161 |
+
dataset:
|
162 |
+
type: mteb/biosses-sts
|
163 |
+
name: MTEB BIOSSES
|
164 |
+
config: default
|
165 |
+
split: test
|
166 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
167 |
+
metrics:
|
168 |
+
- type: cos_sim_pearson
|
169 |
+
value: 85.03673698773017
|
170 |
+
- type: cos_sim_spearman
|
171 |
+
value: 83.6470866785058
|
172 |
+
- type: euclidean_pearson
|
173 |
+
value: 82.64048673096565
|
174 |
+
- type: euclidean_spearman
|
175 |
+
value: 83.63142367101115
|
176 |
+
- type: manhattan_pearson
|
177 |
+
value: 82.71493099760228
|
178 |
+
- type: manhattan_spearman
|
179 |
+
value: 83.60491704294326
|
180 |
+
- task:
|
181 |
+
type: Classification
|
182 |
+
dataset:
|
183 |
+
type: mteb/banking77
|
184 |
+
name: MTEB Banking77Classification
|
185 |
+
config: default
|
186 |
+
split: test
|
187 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
188 |
+
metrics:
|
189 |
+
- type: accuracy
|
190 |
+
value: 86.73376623376623
|
191 |
+
- type: f1
|
192 |
+
value: 86.70294049278262
|
193 |
+
- task:
|
194 |
+
type: Clustering
|
195 |
+
dataset:
|
196 |
+
type: mteb/biorxiv-clustering-p2p
|
197 |
+
name: MTEB BiorxivClusteringP2P
|
198 |
+
config: default
|
199 |
+
split: test
|
200 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
201 |
+
metrics:
|
202 |
+
- type: v_measure
|
203 |
+
value: 40.31923804167062
|
204 |
+
- task:
|
205 |
+
type: Clustering
|
206 |
+
dataset:
|
207 |
+
type: mteb/biorxiv-clustering-s2s
|
208 |
+
name: MTEB BiorxivClusteringS2S
|
209 |
+
config: default
|
210 |
+
split: test
|
211 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
212 |
+
metrics:
|
213 |
+
- type: v_measure
|
214 |
+
value: 37.552547125348454
|
215 |
+
- task:
|
216 |
+
type: Retrieval
|
217 |
+
dataset:
|
218 |
+
type: mteb/cqadupstack-android
|
219 |
+
name: MTEB CQADupstackAndroidRetrieval
|
220 |
+
config: default
|
221 |
+
split: test
|
222 |
+
revision: f46a197baaae43b4f621051089b82a364682dfeb
|
223 |
+
metrics:
|
224 |
+
- type: map_at_1
|
225 |
+
value: 30.567
|
226 |
+
- type: map_at_10
|
227 |
+
value: 41.269
|
228 |
+
- type: map_at_100
|
229 |
+
value: 42.689
|
230 |
+
- type: map_at_1000
|
231 |
+
value: 42.84
|
232 |
+
- type: map_at_3
|
233 |
+
value: 37.567
|
234 |
+
- type: map_at_5
|
235 |
+
value: 39.706
|
236 |
+
- type: mrr_at_1
|
237 |
+
value: 37.053000000000004
|
238 |
+
- type: mrr_at_10
|
239 |
+
value: 46.900999999999996
|
240 |
+
- type: mrr_at_100
|
241 |
+
value: 47.662
|
242 |
+
- type: mrr_at_1000
|
243 |
+
value: 47.713
|
244 |
+
- type: mrr_at_3
|
245 |
+
value: 43.801
|
246 |
+
- type: mrr_at_5
|
247 |
+
value: 45.689
|
248 |
+
- type: ndcg_at_1
|
249 |
+
value: 37.053000000000004
|
250 |
+
- type: ndcg_at_10
|
251 |
+
value: 47.73
|
252 |
+
- type: ndcg_at_100
|
253 |
+
value: 53.128
|
254 |
+
- type: ndcg_at_1000
|
255 |
+
value: 55.300000000000004
|
256 |
+
- type: ndcg_at_3
|
257 |
+
value: 42.046
|
258 |
+
- type: ndcg_at_5
|
259 |
+
value: 44.782
|
260 |
+
- type: precision_at_1
|
261 |
+
value: 37.053000000000004
|
262 |
+
- type: precision_at_10
|
263 |
+
value: 9.142
|
264 |
+
- type: precision_at_100
|
265 |
+
value: 1.485
|
266 |
+
- type: precision_at_1000
|
267 |
+
value: 0.197
|
268 |
+
- type: precision_at_3
|
269 |
+
value: 20.076
|
270 |
+
- type: precision_at_5
|
271 |
+
value: 14.535
|
272 |
+
- type: recall_at_1
|
273 |
+
value: 30.567
|
274 |
+
- type: recall_at_10
|
275 |
+
value: 60.602999999999994
|
276 |
+
- type: recall_at_100
|
277 |
+
value: 83.22800000000001
|
278 |
+
- type: recall_at_1000
|
279 |
+
value: 96.696
|
280 |
+
- type: recall_at_3
|
281 |
+
value: 44.336999999999996
|
282 |
+
- type: recall_at_5
|
283 |
+
value: 51.949
|
284 |
+
- task:
|
285 |
+
type: Retrieval
|
286 |
+
dataset:
|
287 |
+
type: mteb/cqadupstack-english
|
288 |
+
name: MTEB CQADupstackEnglishRetrieval
|
289 |
+
config: default
|
290 |
+
split: test
|
291 |
+
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
|
292 |
+
metrics:
|
293 |
+
- type: map_at_1
|
294 |
+
value: 28.538000000000004
|
295 |
+
- type: map_at_10
|
296 |
+
value: 38.757999999999996
|
297 |
+
- type: map_at_100
|
298 |
+
value: 40.129
|
299 |
+
- type: map_at_1000
|
300 |
+
value: 40.262
|
301 |
+
- type: map_at_3
|
302 |
+
value: 35.866
|
303 |
+
- type: map_at_5
|
304 |
+
value: 37.417
|
305 |
+
- type: mrr_at_1
|
306 |
+
value: 36.051
|
307 |
+
- type: mrr_at_10
|
308 |
+
value: 44.868
|
309 |
+
- type: mrr_at_100
|
310 |
+
value: 45.568999999999996
|
311 |
+
- type: mrr_at_1000
|
312 |
+
value: 45.615
|
313 |
+
- type: mrr_at_3
|
314 |
+
value: 42.558
|
315 |
+
- type: mrr_at_5
|
316 |
+
value: 43.883
|
317 |
+
- type: ndcg_at_1
|
318 |
+
value: 36.051
|
319 |
+
- type: ndcg_at_10
|
320 |
+
value: 44.584
|
321 |
+
- type: ndcg_at_100
|
322 |
+
value: 49.356
|
323 |
+
- type: ndcg_at_1000
|
324 |
+
value: 51.39
|
325 |
+
- type: ndcg_at_3
|
326 |
+
value: 40.389
|
327 |
+
- type: ndcg_at_5
|
328 |
+
value: 42.14
|
329 |
+
- type: precision_at_1
|
330 |
+
value: 36.051
|
331 |
+
- type: precision_at_10
|
332 |
+
value: 8.446
|
333 |
+
- type: precision_at_100
|
334 |
+
value: 1.411
|
335 |
+
- type: precision_at_1000
|
336 |
+
value: 0.19
|
337 |
+
- type: precision_at_3
|
338 |
+
value: 19.639
|
339 |
+
- type: precision_at_5
|
340 |
+
value: 13.796
|
341 |
+
- type: recall_at_1
|
342 |
+
value: 28.538000000000004
|
343 |
+
- type: recall_at_10
|
344 |
+
value: 54.99000000000001
|
345 |
+
- type: recall_at_100
|
346 |
+
value: 75.098
|
347 |
+
- type: recall_at_1000
|
348 |
+
value: 87.848
|
349 |
+
- type: recall_at_3
|
350 |
+
value: 42.236000000000004
|
351 |
+
- type: recall_at_5
|
352 |
+
value: 47.377
|
353 |
+
- task:
|
354 |
+
type: Retrieval
|
355 |
+
dataset:
|
356 |
+
type: mteb/cqadupstack-gaming
|
357 |
+
name: MTEB CQADupstackGamingRetrieval
|
358 |
+
config: default
|
359 |
+
split: test
|
360 |
+
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
|
361 |
+
metrics:
|
362 |
+
- type: map_at_1
|
363 |
+
value: 37.188
|
364 |
+
- type: map_at_10
|
365 |
+
value: 50.861000000000004
|
366 |
+
- type: map_at_100
|
367 |
+
value: 51.917
|
368 |
+
- type: map_at_1000
|
369 |
+
value: 51.964999999999996
|
370 |
+
- type: map_at_3
|
371 |
+
value: 47.144000000000005
|
372 |
+
- type: map_at_5
|
373 |
+
value: 49.417
|
374 |
+
- type: mrr_at_1
|
375 |
+
value: 42.571
|
376 |
+
- type: mrr_at_10
|
377 |
+
value: 54.086999999999996
|
378 |
+
- type: mrr_at_100
|
379 |
+
value: 54.739000000000004
|
380 |
+
- type: mrr_at_1000
|
381 |
+
value: 54.762
|
382 |
+
- type: mrr_at_3
|
383 |
+
value: 51.285000000000004
|
384 |
+
- type: mrr_at_5
|
385 |
+
value: 53.0
|
386 |
+
- type: ndcg_at_1
|
387 |
+
value: 42.571
|
388 |
+
- type: ndcg_at_10
|
389 |
+
value: 57.282
|
390 |
+
- type: ndcg_at_100
|
391 |
+
value: 61.477000000000004
|
392 |
+
- type: ndcg_at_1000
|
393 |
+
value: 62.426
|
394 |
+
- type: ndcg_at_3
|
395 |
+
value: 51.0
|
396 |
+
- type: ndcg_at_5
|
397 |
+
value: 54.346000000000004
|
398 |
+
- type: precision_at_1
|
399 |
+
value: 42.571
|
400 |
+
- type: precision_at_10
|
401 |
+
value: 9.467
|
402 |
+
- type: precision_at_100
|
403 |
+
value: 1.2550000000000001
|
404 |
+
- type: precision_at_1000
|
405 |
+
value: 0.13799999999999998
|
406 |
+
- type: precision_at_3
|
407 |
+
value: 23.114
|
408 |
+
- type: precision_at_5
|
409 |
+
value: 16.250999999999998
|
410 |
+
- type: recall_at_1
|
411 |
+
value: 37.188
|
412 |
+
- type: recall_at_10
|
413 |
+
value: 73.068
|
414 |
+
- type: recall_at_100
|
415 |
+
value: 91.203
|
416 |
+
- type: recall_at_1000
|
417 |
+
value: 97.916
|
418 |
+
- type: recall_at_3
|
419 |
+
value: 56.552
|
420 |
+
- type: recall_at_5
|
421 |
+
value: 64.567
|
422 |
+
- task:
|
423 |
+
type: Retrieval
|
424 |
+
dataset:
|
425 |
+
type: mteb/cqadupstack-gis
|
426 |
+
name: MTEB CQADupstackGisRetrieval
|
427 |
+
config: default
|
428 |
+
split: test
|
429 |
+
revision: 5003b3064772da1887988e05400cf3806fe491f2
|
430 |
+
metrics:
|
431 |
+
- type: map_at_1
|
432 |
+
value: 25.041000000000004
|
433 |
+
- type: map_at_10
|
434 |
+
value: 33.86
|
435 |
+
- type: map_at_100
|
436 |
+
value: 34.988
|
437 |
+
- type: map_at_1000
|
438 |
+
value: 35.064
|
439 |
+
- type: map_at_3
|
440 |
+
value: 31.049
|
441 |
+
- type: map_at_5
|
442 |
+
value: 32.845
|
443 |
+
- type: mrr_at_1
|
444 |
+
value: 26.893
|
445 |
+
- type: mrr_at_10
|
446 |
+
value: 35.594
|
447 |
+
- type: mrr_at_100
|
448 |
+
value: 36.617
|
449 |
+
- type: mrr_at_1000
|
450 |
+
value: 36.671
|
451 |
+
- type: mrr_at_3
|
452 |
+
value: 33.051
|
453 |
+
- type: mrr_at_5
|
454 |
+
value: 34.61
|
455 |
+
- type: ndcg_at_1
|
456 |
+
value: 26.893
|
457 |
+
- type: ndcg_at_10
|
458 |
+
value: 38.674
|
459 |
+
- type: ndcg_at_100
|
460 |
+
value: 44.178
|
461 |
+
- type: ndcg_at_1000
|
462 |
+
value: 46.089999999999996
|
463 |
+
- type: ndcg_at_3
|
464 |
+
value: 33.485
|
465 |
+
- type: ndcg_at_5
|
466 |
+
value: 36.402
|
467 |
+
- type: precision_at_1
|
468 |
+
value: 26.893
|
469 |
+
- type: precision_at_10
|
470 |
+
value: 5.989
|
471 |
+
- type: precision_at_100
|
472 |
+
value: 0.918
|
473 |
+
- type: precision_at_1000
|
474 |
+
value: 0.11100000000000002
|
475 |
+
- type: precision_at_3
|
476 |
+
value: 14.2
|
477 |
+
- type: precision_at_5
|
478 |
+
value: 10.26
|
479 |
+
- type: recall_at_1
|
480 |
+
value: 25.041000000000004
|
481 |
+
- type: recall_at_10
|
482 |
+
value: 51.666000000000004
|
483 |
+
- type: recall_at_100
|
484 |
+
value: 76.896
|
485 |
+
- type: recall_at_1000
|
486 |
+
value: 91.243
|
487 |
+
- type: recall_at_3
|
488 |
+
value: 38.035999999999994
|
489 |
+
- type: recall_at_5
|
490 |
+
value: 44.999
|
491 |
+
- task:
|
492 |
+
type: Retrieval
|
493 |
+
dataset:
|
494 |
+
type: mteb/cqadupstack-mathematica
|
495 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
496 |
+
config: default
|
497 |
+
split: test
|
498 |
+
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
|
499 |
+
metrics:
|
500 |
+
- type: map_at_1
|
501 |
+
value: 15.909999999999998
|
502 |
+
- type: map_at_10
|
503 |
+
value: 23.901
|
504 |
+
- type: map_at_100
|
505 |
+
value: 25.165
|
506 |
+
- type: map_at_1000
|
507 |
+
value: 25.291000000000004
|
508 |
+
- type: map_at_3
|
509 |
+
value: 21.356
|
510 |
+
- type: map_at_5
|
511 |
+
value: 22.816
|
512 |
+
- type: mrr_at_1
|
513 |
+
value: 20.025000000000002
|
514 |
+
- type: mrr_at_10
|
515 |
+
value: 28.382
|
516 |
+
- type: mrr_at_100
|
517 |
+
value: 29.465000000000003
|
518 |
+
- type: mrr_at_1000
|
519 |
+
value: 29.535
|
520 |
+
- type: mrr_at_3
|
521 |
+
value: 25.933
|
522 |
+
- type: mrr_at_5
|
523 |
+
value: 27.332
|
524 |
+
- type: ndcg_at_1
|
525 |
+
value: 20.025000000000002
|
526 |
+
- type: ndcg_at_10
|
527 |
+
value: 29.099000000000004
|
528 |
+
- type: ndcg_at_100
|
529 |
+
value: 35.127
|
530 |
+
- type: ndcg_at_1000
|
531 |
+
value: 38.096000000000004
|
532 |
+
- type: ndcg_at_3
|
533 |
+
value: 24.464
|
534 |
+
- type: ndcg_at_5
|
535 |
+
value: 26.709
|
536 |
+
- type: precision_at_1
|
537 |
+
value: 20.025000000000002
|
538 |
+
- type: precision_at_10
|
539 |
+
value: 5.398
|
540 |
+
- type: precision_at_100
|
541 |
+
value: 0.9690000000000001
|
542 |
+
- type: precision_at_1000
|
543 |
+
value: 0.13699999999999998
|
544 |
+
- type: precision_at_3
|
545 |
+
value: 11.774
|
546 |
+
- type: precision_at_5
|
547 |
+
value: 8.632
|
548 |
+
- type: recall_at_1
|
549 |
+
value: 15.909999999999998
|
550 |
+
- type: recall_at_10
|
551 |
+
value: 40.672000000000004
|
552 |
+
- type: recall_at_100
|
553 |
+
value: 66.855
|
554 |
+
- type: recall_at_1000
|
555 |
+
value: 87.922
|
556 |
+
- type: recall_at_3
|
557 |
+
value: 28.069
|
558 |
+
- type: recall_at_5
|
559 |
+
value: 33.812
|
560 |
+
- task:
|
561 |
+
type: Retrieval
|
562 |
+
dataset:
|
563 |
+
type: mteb/cqadupstack-physics
|
564 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
565 |
+
config: default
|
566 |
+
split: test
|
567 |
+
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
|
568 |
+
metrics:
|
569 |
+
- type: map_at_1
|
570 |
+
value: 30.175
|
571 |
+
- type: map_at_10
|
572 |
+
value: 41.36
|
573 |
+
- type: map_at_100
|
574 |
+
value: 42.701
|
575 |
+
- type: map_at_1000
|
576 |
+
value: 42.817
|
577 |
+
- type: map_at_3
|
578 |
+
value: 37.931
|
579 |
+
- type: map_at_5
|
580 |
+
value: 39.943
|
581 |
+
- type: mrr_at_1
|
582 |
+
value: 35.611
|
583 |
+
- type: mrr_at_10
|
584 |
+
value: 46.346
|
585 |
+
- type: mrr_at_100
|
586 |
+
value: 47.160000000000004
|
587 |
+
- type: mrr_at_1000
|
588 |
+
value: 47.203
|
589 |
+
- type: mrr_at_3
|
590 |
+
value: 43.712
|
591 |
+
- type: mrr_at_5
|
592 |
+
value: 45.367000000000004
|
593 |
+
- type: ndcg_at_1
|
594 |
+
value: 35.611
|
595 |
+
- type: ndcg_at_10
|
596 |
+
value: 47.532000000000004
|
597 |
+
- type: ndcg_at_100
|
598 |
+
value: 53.003
|
599 |
+
- type: ndcg_at_1000
|
600 |
+
value: 55.007
|
601 |
+
- type: ndcg_at_3
|
602 |
+
value: 42.043
|
603 |
+
- type: ndcg_at_5
|
604 |
+
value: 44.86
|
605 |
+
- type: precision_at_1
|
606 |
+
value: 35.611
|
607 |
+
- type: precision_at_10
|
608 |
+
value: 8.624
|
609 |
+
- type: precision_at_100
|
610 |
+
value: 1.332
|
611 |
+
- type: precision_at_1000
|
612 |
+
value: 0.169
|
613 |
+
- type: precision_at_3
|
614 |
+
value: 20.083000000000002
|
615 |
+
- type: precision_at_5
|
616 |
+
value: 14.437
|
617 |
+
- type: recall_at_1
|
618 |
+
value: 30.175
|
619 |
+
- type: recall_at_10
|
620 |
+
value: 60.5
|
621 |
+
- type: recall_at_100
|
622 |
+
value: 83.399
|
623 |
+
- type: recall_at_1000
|
624 |
+
value: 96.255
|
625 |
+
- type: recall_at_3
|
626 |
+
value: 45.448
|
627 |
+
- type: recall_at_5
|
628 |
+
value: 52.432
|
629 |
+
- task:
|
630 |
+
type: Retrieval
|
631 |
+
dataset:
|
632 |
+
type: mteb/cqadupstack-programmers
|
633 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
634 |
+
config: default
|
635 |
+
split: test
|
636 |
+
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
|
637 |
+
metrics:
|
638 |
+
- type: map_at_1
|
639 |
+
value: 22.467000000000002
|
640 |
+
- type: map_at_10
|
641 |
+
value: 33.812999999999995
|
642 |
+
- type: map_at_100
|
643 |
+
value: 35.248000000000005
|
644 |
+
- type: map_at_1000
|
645 |
+
value: 35.359
|
646 |
+
- type: map_at_3
|
647 |
+
value: 30.316
|
648 |
+
- type: map_at_5
|
649 |
+
value: 32.233000000000004
|
650 |
+
- type: mrr_at_1
|
651 |
+
value: 28.310999999999996
|
652 |
+
- type: mrr_at_10
|
653 |
+
value: 38.979
|
654 |
+
- type: mrr_at_100
|
655 |
+
value: 39.937
|
656 |
+
- type: mrr_at_1000
|
657 |
+
value: 39.989999999999995
|
658 |
+
- type: mrr_at_3
|
659 |
+
value: 36.244
|
660 |
+
- type: mrr_at_5
|
661 |
+
value: 37.871
|
662 |
+
- type: ndcg_at_1
|
663 |
+
value: 28.310999999999996
|
664 |
+
- type: ndcg_at_10
|
665 |
+
value: 40.282000000000004
|
666 |
+
- type: ndcg_at_100
|
667 |
+
value: 46.22
|
668 |
+
- type: ndcg_at_1000
|
669 |
+
value: 48.507
|
670 |
+
- type: ndcg_at_3
|
671 |
+
value: 34.596
|
672 |
+
- type: ndcg_at_5
|
673 |
+
value: 37.267
|
674 |
+
- type: precision_at_1
|
675 |
+
value: 28.310999999999996
|
676 |
+
- type: precision_at_10
|
677 |
+
value: 7.831
|
678 |
+
- type: precision_at_100
|
679 |
+
value: 1.257
|
680 |
+
- type: precision_at_1000
|
681 |
+
value: 0.164
|
682 |
+
- type: precision_at_3
|
683 |
+
value: 17.275
|
684 |
+
- type: precision_at_5
|
685 |
+
value: 12.556999999999999
|
686 |
+
- type: recall_at_1
|
687 |
+
value: 22.467000000000002
|
688 |
+
- type: recall_at_10
|
689 |
+
value: 54.14099999999999
|
690 |
+
- type: recall_at_100
|
691 |
+
value: 79.593
|
692 |
+
- type: recall_at_1000
|
693 |
+
value: 95.063
|
694 |
+
- type: recall_at_3
|
695 |
+
value: 38.539
|
696 |
+
- type: recall_at_5
|
697 |
+
value: 45.403
|
698 |
+
- task:
|
699 |
+
type: Retrieval
|
700 |
+
dataset:
|
701 |
+
type: mteb/cqadupstack
|
702 |
+
name: MTEB CQADupstackRetrieval
|
703 |
+
config: default
|
704 |
+
split: test
|
705 |
+
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
|
706 |
+
metrics:
|
707 |
+
- type: map_at_1
|
708 |
+
value: 24.18591666666667
|
709 |
+
- type: map_at_10
|
710 |
+
value: 33.84258333333333
|
711 |
+
- type: map_at_100
|
712 |
+
value: 35.11391666666666
|
713 |
+
- type: map_at_1000
|
714 |
+
value: 35.23258333333333
|
715 |
+
- type: map_at_3
|
716 |
+
value: 30.764249999999997
|
717 |
+
- type: map_at_5
|
718 |
+
value: 32.52333333333334
|
719 |
+
- type: mrr_at_1
|
720 |
+
value: 28.54733333333333
|
721 |
+
- type: mrr_at_10
|
722 |
+
value: 37.81725
|
723 |
+
- type: mrr_at_100
|
724 |
+
value: 38.716499999999996
|
725 |
+
- type: mrr_at_1000
|
726 |
+
value: 38.77458333333333
|
727 |
+
- type: mrr_at_3
|
728 |
+
value: 35.157833333333336
|
729 |
+
- type: mrr_at_5
|
730 |
+
value: 36.69816666666667
|
731 |
+
- type: ndcg_at_1
|
732 |
+
value: 28.54733333333333
|
733 |
+
- type: ndcg_at_10
|
734 |
+
value: 39.51508333333334
|
735 |
+
- type: ndcg_at_100
|
736 |
+
value: 44.95316666666666
|
737 |
+
- type: ndcg_at_1000
|
738 |
+
value: 47.257083333333334
|
739 |
+
- type: ndcg_at_3
|
740 |
+
value: 34.205833333333324
|
741 |
+
- type: ndcg_at_5
|
742 |
+
value: 36.78266666666667
|
743 |
+
- type: precision_at_1
|
744 |
+
value: 28.54733333333333
|
745 |
+
- type: precision_at_10
|
746 |
+
value: 7.082583333333334
|
747 |
+
- type: precision_at_100
|
748 |
+
value: 1.1590833333333332
|
749 |
+
- type: precision_at_1000
|
750 |
+
value: 0.15516666666666662
|
751 |
+
- type: precision_at_3
|
752 |
+
value: 15.908750000000001
|
753 |
+
- type: precision_at_5
|
754 |
+
value: 11.505416666666669
|
755 |
+
- type: recall_at_1
|
756 |
+
value: 24.18591666666667
|
757 |
+
- type: recall_at_10
|
758 |
+
value: 52.38758333333333
|
759 |
+
- type: recall_at_100
|
760 |
+
value: 76.13666666666667
|
761 |
+
- type: recall_at_1000
|
762 |
+
value: 91.99066666666667
|
763 |
+
- type: recall_at_3
|
764 |
+
value: 37.78333333333334
|
765 |
+
- type: recall_at_5
|
766 |
+
value: 44.30141666666666
|
767 |
+
- task:
|
768 |
+
type: Retrieval
|
769 |
+
dataset:
|
770 |
+
type: mteb/cqadupstack-stats
|
771 |
+
name: MTEB CQADupstackStatsRetrieval
|
772 |
+
config: default
|
773 |
+
split: test
|
774 |
+
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
|
775 |
+
metrics:
|
776 |
+
- type: map_at_1
|
777 |
+
value: 21.975
|
778 |
+
- type: map_at_10
|
779 |
+
value: 29.781000000000002
|
780 |
+
- type: map_at_100
|
781 |
+
value: 30.847
|
782 |
+
- type: map_at_1000
|
783 |
+
value: 30.94
|
784 |
+
- type: map_at_3
|
785 |
+
value: 27.167
|
786 |
+
- type: map_at_5
|
787 |
+
value: 28.633999999999997
|
788 |
+
- type: mrr_at_1
|
789 |
+
value: 24.387
|
790 |
+
- type: mrr_at_10
|
791 |
+
value: 32.476
|
792 |
+
- type: mrr_at_100
|
793 |
+
value: 33.337
|
794 |
+
- type: mrr_at_1000
|
795 |
+
value: 33.403
|
796 |
+
- type: mrr_at_3
|
797 |
+
value: 29.881999999999998
|
798 |
+
- type: mrr_at_5
|
799 |
+
value: 31.339
|
800 |
+
- type: ndcg_at_1
|
801 |
+
value: 24.387
|
802 |
+
- type: ndcg_at_10
|
803 |
+
value: 34.596
|
804 |
+
- type: ndcg_at_100
|
805 |
+
value: 39.635
|
806 |
+
- type: ndcg_at_1000
|
807 |
+
value: 42.079
|
808 |
+
- type: ndcg_at_3
|
809 |
+
value: 29.516
|
810 |
+
- type: ndcg_at_5
|
811 |
+
value: 31.959
|
812 |
+
- type: precision_at_1
|
813 |
+
value: 24.387
|
814 |
+
- type: precision_at_10
|
815 |
+
value: 5.6129999999999995
|
816 |
+
- type: precision_at_100
|
817 |
+
value: 0.8909999999999999
|
818 |
+
- type: precision_at_1000
|
819 |
+
value: 0.117
|
820 |
+
- type: precision_at_3
|
821 |
+
value: 12.73
|
822 |
+
- type: precision_at_5
|
823 |
+
value: 9.171999999999999
|
824 |
+
- type: recall_at_1
|
825 |
+
value: 21.975
|
826 |
+
- type: recall_at_10
|
827 |
+
value: 46.826
|
828 |
+
- type: recall_at_100
|
829 |
+
value: 69.554
|
830 |
+
- type: recall_at_1000
|
831 |
+
value: 87.749
|
832 |
+
- type: recall_at_3
|
833 |
+
value: 33.016
|
834 |
+
- type: recall_at_5
|
835 |
+
value: 38.97
|
836 |
+
- task:
|
837 |
+
type: Retrieval
|
838 |
+
dataset:
|
839 |
+
type: mteb/cqadupstack-tex
|
840 |
+
name: MTEB CQADupstackTexRetrieval
|
841 |
+
config: default
|
842 |
+
split: test
|
843 |
+
revision: 46989137a86843e03a6195de44b09deda022eec7
|
844 |
+
metrics:
|
845 |
+
- type: map_at_1
|
846 |
+
value: 15.614
|
847 |
+
- type: map_at_10
|
848 |
+
value: 22.927
|
849 |
+
- type: map_at_100
|
850 |
+
value: 24.185000000000002
|
851 |
+
- type: map_at_1000
|
852 |
+
value: 24.319
|
853 |
+
- type: map_at_3
|
854 |
+
value: 20.596
|
855 |
+
- type: map_at_5
|
856 |
+
value: 21.854000000000003
|
857 |
+
- type: mrr_at_1
|
858 |
+
value: 18.858
|
859 |
+
- type: mrr_at_10
|
860 |
+
value: 26.535999999999998
|
861 |
+
- type: mrr_at_100
|
862 |
+
value: 27.582
|
863 |
+
- type: mrr_at_1000
|
864 |
+
value: 27.665
|
865 |
+
- type: mrr_at_3
|
866 |
+
value: 24.295
|
867 |
+
- type: mrr_at_5
|
868 |
+
value: 25.532
|
869 |
+
- type: ndcg_at_1
|
870 |
+
value: 18.858
|
871 |
+
- type: ndcg_at_10
|
872 |
+
value: 27.583000000000002
|
873 |
+
- type: ndcg_at_100
|
874 |
+
value: 33.635
|
875 |
+
- type: ndcg_at_1000
|
876 |
+
value: 36.647
|
877 |
+
- type: ndcg_at_3
|
878 |
+
value: 23.348
|
879 |
+
- type: ndcg_at_5
|
880 |
+
value: 25.257
|
881 |
+
- type: precision_at_1
|
882 |
+
value: 18.858
|
883 |
+
- type: precision_at_10
|
884 |
+
value: 5.158
|
885 |
+
- type: precision_at_100
|
886 |
+
value: 0.964
|
887 |
+
- type: precision_at_1000
|
888 |
+
value: 0.13999999999999999
|
889 |
+
- type: precision_at_3
|
890 |
+
value: 11.092
|
891 |
+
- type: precision_at_5
|
892 |
+
value: 8.1
|
893 |
+
- type: recall_at_1
|
894 |
+
value: 15.614
|
895 |
+
- type: recall_at_10
|
896 |
+
value: 37.916
|
897 |
+
- type: recall_at_100
|
898 |
+
value: 65.205
|
899 |
+
- type: recall_at_1000
|
900 |
+
value: 86.453
|
901 |
+
- type: recall_at_3
|
902 |
+
value: 26.137
|
903 |
+
- type: recall_at_5
|
904 |
+
value: 31.087999999999997
|
905 |
+
- task:
|
906 |
+
type: Retrieval
|
907 |
+
dataset:
|
908 |
+
type: mteb/cqadupstack-unix
|
909 |
+
name: MTEB CQADupstackUnixRetrieval
|
910 |
+
config: default
|
911 |
+
split: test
|
912 |
+
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
|
913 |
+
metrics:
|
914 |
+
- type: map_at_1
|
915 |
+
value: 23.078000000000003
|
916 |
+
- type: map_at_10
|
917 |
+
value: 31.941999999999997
|
918 |
+
- type: map_at_100
|
919 |
+
value: 33.196999999999996
|
920 |
+
- type: map_at_1000
|
921 |
+
value: 33.303
|
922 |
+
- type: map_at_3
|
923 |
+
value: 28.927000000000003
|
924 |
+
- type: map_at_5
|
925 |
+
value: 30.707
|
926 |
+
- type: mrr_at_1
|
927 |
+
value: 26.866
|
928 |
+
- type: mrr_at_10
|
929 |
+
value: 35.557
|
930 |
+
- type: mrr_at_100
|
931 |
+
value: 36.569
|
932 |
+
- type: mrr_at_1000
|
933 |
+
value: 36.632
|
934 |
+
- type: mrr_at_3
|
935 |
+
value: 32.897999999999996
|
936 |
+
- type: mrr_at_5
|
937 |
+
value: 34.437
|
938 |
+
- type: ndcg_at_1
|
939 |
+
value: 26.866
|
940 |
+
- type: ndcg_at_10
|
941 |
+
value: 37.372
|
942 |
+
- type: ndcg_at_100
|
943 |
+
value: 43.248
|
944 |
+
- type: ndcg_at_1000
|
945 |
+
value: 45.632
|
946 |
+
- type: ndcg_at_3
|
947 |
+
value: 31.852999999999998
|
948 |
+
- type: ndcg_at_5
|
949 |
+
value: 34.582
|
950 |
+
- type: precision_at_1
|
951 |
+
value: 26.866
|
952 |
+
- type: precision_at_10
|
953 |
+
value: 6.511
|
954 |
+
- type: precision_at_100
|
955 |
+
value: 1.078
|
956 |
+
- type: precision_at_1000
|
957 |
+
value: 0.13899999999999998
|
958 |
+
- type: precision_at_3
|
959 |
+
value: 14.582999999999998
|
960 |
+
- type: precision_at_5
|
961 |
+
value: 10.634
|
962 |
+
- type: recall_at_1
|
963 |
+
value: 23.078000000000003
|
964 |
+
- type: recall_at_10
|
965 |
+
value: 50.334
|
966 |
+
- type: recall_at_100
|
967 |
+
value: 75.787
|
968 |
+
- type: recall_at_1000
|
969 |
+
value: 92.485
|
970 |
+
- type: recall_at_3
|
971 |
+
value: 35.386
|
972 |
+
- type: recall_at_5
|
973 |
+
value: 42.225
|
974 |
+
- task:
|
975 |
+
type: Retrieval
|
976 |
+
dataset:
|
977 |
+
type: mteb/cqadupstack-webmasters
|
978 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
979 |
+
config: default
|
980 |
+
split: test
|
981 |
+
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
|
982 |
+
metrics:
|
983 |
+
- type: map_at_1
|
984 |
+
value: 22.203999999999997
|
985 |
+
- type: map_at_10
|
986 |
+
value: 31.276
|
987 |
+
- type: map_at_100
|
988 |
+
value: 32.844
|
989 |
+
- type: map_at_1000
|
990 |
+
value: 33.062999999999995
|
991 |
+
- type: map_at_3
|
992 |
+
value: 27.733999999999998
|
993 |
+
- type: map_at_5
|
994 |
+
value: 29.64
|
995 |
+
- type: mrr_at_1
|
996 |
+
value: 27.272999999999996
|
997 |
+
- type: mrr_at_10
|
998 |
+
value: 36.083
|
999 |
+
- type: mrr_at_100
|
1000 |
+
value: 37.008
|
1001 |
+
- type: mrr_at_1000
|
1002 |
+
value: 37.076
|
1003 |
+
- type: mrr_at_3
|
1004 |
+
value: 33.004
|
1005 |
+
- type: mrr_at_5
|
1006 |
+
value: 34.664
|
1007 |
+
- type: ndcg_at_1
|
1008 |
+
value: 27.272999999999996
|
1009 |
+
- type: ndcg_at_10
|
1010 |
+
value: 37.763000000000005
|
1011 |
+
- type: ndcg_at_100
|
1012 |
+
value: 43.566
|
1013 |
+
- type: ndcg_at_1000
|
1014 |
+
value: 46.356
|
1015 |
+
- type: ndcg_at_3
|
1016 |
+
value: 31.673000000000002
|
1017 |
+
- type: ndcg_at_5
|
1018 |
+
value: 34.501
|
1019 |
+
- type: precision_at_1
|
1020 |
+
value: 27.272999999999996
|
1021 |
+
- type: precision_at_10
|
1022 |
+
value: 7.470000000000001
|
1023 |
+
- type: precision_at_100
|
1024 |
+
value: 1.502
|
1025 |
+
- type: precision_at_1000
|
1026 |
+
value: 0.24
|
1027 |
+
- type: precision_at_3
|
1028 |
+
value: 14.756
|
1029 |
+
- type: precision_at_5
|
1030 |
+
value: 11.225
|
1031 |
+
- type: recall_at_1
|
1032 |
+
value: 22.203999999999997
|
1033 |
+
- type: recall_at_10
|
1034 |
+
value: 51.437999999999995
|
1035 |
+
- type: recall_at_100
|
1036 |
+
value: 76.845
|
1037 |
+
- type: recall_at_1000
|
1038 |
+
value: 94.38600000000001
|
1039 |
+
- type: recall_at_3
|
1040 |
+
value: 34.258
|
1041 |
+
- type: recall_at_5
|
1042 |
+
value: 41.512
|
1043 |
+
- task:
|
1044 |
+
type: Retrieval
|
1045 |
+
dataset:
|
1046 |
+
type: mteb/cqadupstack-wordpress
|
1047 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1048 |
+
config: default
|
1049 |
+
split: test
|
1050 |
+
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
|
1051 |
+
metrics:
|
1052 |
+
- type: map_at_1
|
1053 |
+
value: 17.474
|
1054 |
+
- type: map_at_10
|
1055 |
+
value: 26.362999999999996
|
1056 |
+
- type: map_at_100
|
1057 |
+
value: 27.456999999999997
|
1058 |
+
- type: map_at_1000
|
1059 |
+
value: 27.567999999999998
|
1060 |
+
- type: map_at_3
|
1061 |
+
value: 23.518
|
1062 |
+
- type: map_at_5
|
1063 |
+
value: 25.068
|
1064 |
+
- type: mrr_at_1
|
1065 |
+
value: 18.669
|
1066 |
+
- type: mrr_at_10
|
1067 |
+
value: 27.998
|
1068 |
+
- type: mrr_at_100
|
1069 |
+
value: 28.953
|
1070 |
+
- type: mrr_at_1000
|
1071 |
+
value: 29.03
|
1072 |
+
- type: mrr_at_3
|
1073 |
+
value: 25.230999999999998
|
1074 |
+
- type: mrr_at_5
|
1075 |
+
value: 26.654
|
1076 |
+
- type: ndcg_at_1
|
1077 |
+
value: 18.669
|
1078 |
+
- type: ndcg_at_10
|
1079 |
+
value: 31.684
|
1080 |
+
- type: ndcg_at_100
|
1081 |
+
value: 36.864999999999995
|
1082 |
+
- type: ndcg_at_1000
|
1083 |
+
value: 39.555
|
1084 |
+
- type: ndcg_at_3
|
1085 |
+
value: 26.057000000000002
|
1086 |
+
- type: ndcg_at_5
|
1087 |
+
value: 28.587
|
1088 |
+
- type: precision_at_1
|
1089 |
+
value: 18.669
|
1090 |
+
- type: precision_at_10
|
1091 |
+
value: 5.3420000000000005
|
1092 |
+
- type: precision_at_100
|
1093 |
+
value: 0.847
|
1094 |
+
- type: precision_at_1000
|
1095 |
+
value: 0.12
|
1096 |
+
- type: precision_at_3
|
1097 |
+
value: 11.583
|
1098 |
+
- type: precision_at_5
|
1099 |
+
value: 8.466
|
1100 |
+
- type: recall_at_1
|
1101 |
+
value: 17.474
|
1102 |
+
- type: recall_at_10
|
1103 |
+
value: 46.497
|
1104 |
+
- type: recall_at_100
|
1105 |
+
value: 69.977
|
1106 |
+
- type: recall_at_1000
|
1107 |
+
value: 89.872
|
1108 |
+
- type: recall_at_3
|
1109 |
+
value: 31.385999999999996
|
1110 |
+
- type: recall_at_5
|
1111 |
+
value: 37.283
|
1112 |
+
- task:
|
1113 |
+
type: Retrieval
|
1114 |
+
dataset:
|
1115 |
+
type: mteb/climate-fever
|
1116 |
+
name: MTEB ClimateFEVER
|
1117 |
+
config: default
|
1118 |
+
split: test
|
1119 |
+
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
|
1120 |
+
metrics:
|
1121 |
+
- type: map_at_1
|
1122 |
+
value: 17.173
|
1123 |
+
- type: map_at_10
|
1124 |
+
value: 30.407
|
1125 |
+
- type: map_at_100
|
1126 |
+
value: 32.528
|
1127 |
+
- type: map_at_1000
|
1128 |
+
value: 32.698
|
1129 |
+
- type: map_at_3
|
1130 |
+
value: 25.523
|
1131 |
+
- type: map_at_5
|
1132 |
+
value: 28.038
|
1133 |
+
- type: mrr_at_1
|
1134 |
+
value: 38.958
|
1135 |
+
- type: mrr_at_10
|
1136 |
+
value: 51.515
|
1137 |
+
- type: mrr_at_100
|
1138 |
+
value: 52.214000000000006
|
1139 |
+
- type: mrr_at_1000
|
1140 |
+
value: 52.237
|
1141 |
+
- type: mrr_at_3
|
1142 |
+
value: 48.502
|
1143 |
+
- type: mrr_at_5
|
1144 |
+
value: 50.251000000000005
|
1145 |
+
- type: ndcg_at_1
|
1146 |
+
value: 38.958
|
1147 |
+
- type: ndcg_at_10
|
1148 |
+
value: 40.355000000000004
|
1149 |
+
- type: ndcg_at_100
|
1150 |
+
value: 47.68
|
1151 |
+
- type: ndcg_at_1000
|
1152 |
+
value: 50.370000000000005
|
1153 |
+
- type: ndcg_at_3
|
1154 |
+
value: 33.946
|
1155 |
+
- type: ndcg_at_5
|
1156 |
+
value: 36.057
|
1157 |
+
- type: precision_at_1
|
1158 |
+
value: 38.958
|
1159 |
+
- type: precision_at_10
|
1160 |
+
value: 12.508
|
1161 |
+
- type: precision_at_100
|
1162 |
+
value: 2.054
|
1163 |
+
- type: precision_at_1000
|
1164 |
+
value: 0.256
|
1165 |
+
- type: precision_at_3
|
1166 |
+
value: 25.581
|
1167 |
+
- type: precision_at_5
|
1168 |
+
value: 19.256999999999998
|
1169 |
+
- type: recall_at_1
|
1170 |
+
value: 17.173
|
1171 |
+
- type: recall_at_10
|
1172 |
+
value: 46.967
|
1173 |
+
- type: recall_at_100
|
1174 |
+
value: 71.47200000000001
|
1175 |
+
- type: recall_at_1000
|
1176 |
+
value: 86.238
|
1177 |
+
- type: recall_at_3
|
1178 |
+
value: 30.961
|
1179 |
+
- type: recall_at_5
|
1180 |
+
value: 37.539
|
1181 |
+
- task:
|
1182 |
+
type: Retrieval
|
1183 |
+
dataset:
|
1184 |
+
type: mteb/dbpedia
|
1185 |
+
name: MTEB DBPedia
|
1186 |
+
config: default
|
1187 |
+
split: test
|
1188 |
+
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
|
1189 |
+
metrics:
|
1190 |
+
- type: map_at_1
|
1191 |
+
value: 8.999
|
1192 |
+
- type: map_at_10
|
1193 |
+
value: 18.989
|
1194 |
+
- type: map_at_100
|
1195 |
+
value: 26.133
|
1196 |
+
- type: map_at_1000
|
1197 |
+
value: 27.666
|
1198 |
+
- type: map_at_3
|
1199 |
+
value: 13.918
|
1200 |
+
- type: map_at_5
|
1201 |
+
value: 16.473
|
1202 |
+
- type: mrr_at_1
|
1203 |
+
value: 66.25
|
1204 |
+
- type: mrr_at_10
|
1205 |
+
value: 74.161
|
1206 |
+
- type: mrr_at_100
|
1207 |
+
value: 74.516
|
1208 |
+
- type: mrr_at_1000
|
1209 |
+
value: 74.524
|
1210 |
+
- type: mrr_at_3
|
1211 |
+
value: 72.875
|
1212 |
+
- type: mrr_at_5
|
1213 |
+
value: 73.613
|
1214 |
+
- type: ndcg_at_1
|
1215 |
+
value: 54.37499999999999
|
1216 |
+
- type: ndcg_at_10
|
1217 |
+
value: 39.902
|
1218 |
+
- type: ndcg_at_100
|
1219 |
+
value: 44.212
|
1220 |
+
- type: ndcg_at_1000
|
1221 |
+
value: 51.62
|
1222 |
+
- type: ndcg_at_3
|
1223 |
+
value: 45.193
|
1224 |
+
- type: ndcg_at_5
|
1225 |
+
value: 42.541000000000004
|
1226 |
+
- type: precision_at_1
|
1227 |
+
value: 66.25
|
1228 |
+
- type: precision_at_10
|
1229 |
+
value: 30.425
|
1230 |
+
- type: precision_at_100
|
1231 |
+
value: 9.754999999999999
|
1232 |
+
- type: precision_at_1000
|
1233 |
+
value: 2.043
|
1234 |
+
- type: precision_at_3
|
1235 |
+
value: 48.25
|
1236 |
+
- type: precision_at_5
|
1237 |
+
value: 40.65
|
1238 |
+
- type: recall_at_1
|
1239 |
+
value: 8.999
|
1240 |
+
- type: recall_at_10
|
1241 |
+
value: 24.133
|
1242 |
+
- type: recall_at_100
|
1243 |
+
value: 49.138999999999996
|
1244 |
+
- type: recall_at_1000
|
1245 |
+
value: 72.639
|
1246 |
+
- type: recall_at_3
|
1247 |
+
value: 15.287999999999998
|
1248 |
+
- type: recall_at_5
|
1249 |
+
value: 19.415
|
1250 |
+
- task:
|
1251 |
+
type: Classification
|
1252 |
+
dataset:
|
1253 |
+
type: mteb/emotion
|
1254 |
+
name: MTEB EmotionClassification
|
1255 |
+
config: default
|
1256 |
+
split: test
|
1257 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1258 |
+
metrics:
|
1259 |
+
- type: accuracy
|
1260 |
+
value: 46.38999999999999
|
1261 |
+
- type: f1
|
1262 |
+
value: 41.444205512055234
|
1263 |
+
- task:
|
1264 |
+
type: Retrieval
|
1265 |
+
dataset:
|
1266 |
+
type: mteb/fever
|
1267 |
+
name: MTEB FEVER
|
1268 |
+
config: default
|
1269 |
+
split: test
|
1270 |
+
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
|
1271 |
+
metrics:
|
1272 |
+
- type: map_at_1
|
1273 |
+
value: 87.35000000000001
|
1274 |
+
- type: map_at_10
|
1275 |
+
value: 92.837
|
1276 |
+
- type: map_at_100
|
1277 |
+
value: 92.996
|
1278 |
+
- type: map_at_1000
|
1279 |
+
value: 93.006
|
1280 |
+
- type: map_at_3
|
1281 |
+
value: 92.187
|
1282 |
+
- type: map_at_5
|
1283 |
+
value: 92.595
|
1284 |
+
- type: mrr_at_1
|
1285 |
+
value: 93.864
|
1286 |
+
- type: mrr_at_10
|
1287 |
+
value: 96.723
|
1288 |
+
- type: mrr_at_100
|
1289 |
+
value: 96.72500000000001
|
1290 |
+
- type: mrr_at_1000
|
1291 |
+
value: 96.72500000000001
|
1292 |
+
- type: mrr_at_3
|
1293 |
+
value: 96.64
|
1294 |
+
- type: mrr_at_5
|
1295 |
+
value: 96.71499999999999
|
1296 |
+
- type: ndcg_at_1
|
1297 |
+
value: 93.864
|
1298 |
+
- type: ndcg_at_10
|
1299 |
+
value: 94.813
|
1300 |
+
- type: ndcg_at_100
|
1301 |
+
value: 95.243
|
1302 |
+
- type: ndcg_at_1000
|
1303 |
+
value: 95.38600000000001
|
1304 |
+
- type: ndcg_at_3
|
1305 |
+
value: 94.196
|
1306 |
+
- type: ndcg_at_5
|
1307 |
+
value: 94.521
|
1308 |
+
- type: precision_at_1
|
1309 |
+
value: 93.864
|
1310 |
+
- type: precision_at_10
|
1311 |
+
value: 10.951
|
1312 |
+
- type: precision_at_100
|
1313 |
+
value: 1.1400000000000001
|
1314 |
+
- type: precision_at_1000
|
1315 |
+
value: 0.117
|
1316 |
+
- type: precision_at_3
|
1317 |
+
value: 35.114000000000004
|
1318 |
+
- type: precision_at_5
|
1319 |
+
value: 21.476
|
1320 |
+
- type: recall_at_1
|
1321 |
+
value: 87.35000000000001
|
1322 |
+
- type: recall_at_10
|
1323 |
+
value: 96.941
|
1324 |
+
- type: recall_at_100
|
1325 |
+
value: 98.397
|
1326 |
+
- type: recall_at_1000
|
1327 |
+
value: 99.21600000000001
|
1328 |
+
- type: recall_at_3
|
1329 |
+
value: 95.149
|
1330 |
+
- type: recall_at_5
|
1331 |
+
value: 96.131
|
1332 |
+
- task:
|
1333 |
+
type: Retrieval
|
1334 |
+
dataset:
|
1335 |
+
type: mteb/fiqa
|
1336 |
+
name: MTEB FiQA2018
|
1337 |
+
config: default
|
1338 |
+
split: test
|
1339 |
+
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
|
1340 |
+
metrics:
|
1341 |
+
- type: map_at_1
|
1342 |
+
value: 24.476
|
1343 |
+
- type: map_at_10
|
1344 |
+
value: 40.11
|
1345 |
+
- type: map_at_100
|
1346 |
+
value: 42.229
|
1347 |
+
- type: map_at_1000
|
1348 |
+
value: 42.378
|
1349 |
+
- type: map_at_3
|
1350 |
+
value: 34.512
|
1351 |
+
- type: map_at_5
|
1352 |
+
value: 38.037
|
1353 |
+
- type: mrr_at_1
|
1354 |
+
value: 47.839999999999996
|
1355 |
+
- type: mrr_at_10
|
1356 |
+
value: 57.053
|
1357 |
+
- type: mrr_at_100
|
1358 |
+
value: 57.772
|
1359 |
+
- type: mrr_at_1000
|
1360 |
+
value: 57.799
|
1361 |
+
- type: mrr_at_3
|
1362 |
+
value: 54.552
|
1363 |
+
- type: mrr_at_5
|
1364 |
+
value: 56.011
|
1365 |
+
- type: ndcg_at_1
|
1366 |
+
value: 47.839999999999996
|
1367 |
+
- type: ndcg_at_10
|
1368 |
+
value: 48.650999999999996
|
1369 |
+
- type: ndcg_at_100
|
1370 |
+
value: 55.681000000000004
|
1371 |
+
- type: ndcg_at_1000
|
1372 |
+
value: 57.979
|
1373 |
+
- type: ndcg_at_3
|
1374 |
+
value: 43.923
|
1375 |
+
- type: ndcg_at_5
|
1376 |
+
value: 46.037
|
1377 |
+
- type: precision_at_1
|
1378 |
+
value: 47.839999999999996
|
1379 |
+
- type: precision_at_10
|
1380 |
+
value: 13.395000000000001
|
1381 |
+
- type: precision_at_100
|
1382 |
+
value: 2.0660000000000003
|
1383 |
+
- type: precision_at_1000
|
1384 |
+
value: 0.248
|
1385 |
+
- type: precision_at_3
|
1386 |
+
value: 29.064
|
1387 |
+
- type: precision_at_5
|
1388 |
+
value: 22.006
|
1389 |
+
- type: recall_at_1
|
1390 |
+
value: 24.476
|
1391 |
+
- type: recall_at_10
|
1392 |
+
value: 56.216
|
1393 |
+
- type: recall_at_100
|
1394 |
+
value: 81.798
|
1395 |
+
- type: recall_at_1000
|
1396 |
+
value: 95.48299999999999
|
1397 |
+
- type: recall_at_3
|
1398 |
+
value: 39.357
|
1399 |
+
- type: recall_at_5
|
1400 |
+
value: 47.802
|
1401 |
+
- task:
|
1402 |
+
type: Retrieval
|
1403 |
+
dataset:
|
1404 |
+
type: mteb/hotpotqa
|
1405 |
+
name: MTEB HotpotQA
|
1406 |
+
config: default
|
1407 |
+
split: test
|
1408 |
+
revision: ab518f4d6fcca38d87c25209f94beba119d02014
|
1409 |
+
metrics:
|
1410 |
+
- type: map_at_1
|
1411 |
+
value: 42.728
|
1412 |
+
- type: map_at_10
|
1413 |
+
value: 57.737
|
1414 |
+
- type: map_at_100
|
1415 |
+
value: 58.531
|
1416 |
+
- type: map_at_1000
|
1417 |
+
value: 58.594
|
1418 |
+
- type: map_at_3
|
1419 |
+
value: 54.869
|
1420 |
+
- type: map_at_5
|
1421 |
+
value: 56.55
|
1422 |
+
- type: mrr_at_1
|
1423 |
+
value: 85.456
|
1424 |
+
- type: mrr_at_10
|
1425 |
+
value: 90.062
|
1426 |
+
- type: mrr_at_100
|
1427 |
+
value: 90.159
|
1428 |
+
- type: mrr_at_1000
|
1429 |
+
value: 90.16
|
1430 |
+
- type: mrr_at_3
|
1431 |
+
value: 89.37899999999999
|
1432 |
+
- type: mrr_at_5
|
1433 |
+
value: 89.81
|
1434 |
+
- type: ndcg_at_1
|
1435 |
+
value: 85.456
|
1436 |
+
- type: ndcg_at_10
|
1437 |
+
value: 67.755
|
1438 |
+
- type: ndcg_at_100
|
1439 |
+
value: 70.341
|
1440 |
+
- type: ndcg_at_1000
|
1441 |
+
value: 71.538
|
1442 |
+
- type: ndcg_at_3
|
1443 |
+
value: 63.735
|
1444 |
+
- type: ndcg_at_5
|
1445 |
+
value: 65.823
|
1446 |
+
- type: precision_at_1
|
1447 |
+
value: 85.456
|
1448 |
+
- type: precision_at_10
|
1449 |
+
value: 13.450000000000001
|
1450 |
+
- type: precision_at_100
|
1451 |
+
value: 1.545
|
1452 |
+
- type: precision_at_1000
|
1453 |
+
value: 0.16999999999999998
|
1454 |
+
- type: precision_at_3
|
1455 |
+
value: 38.861000000000004
|
1456 |
+
- type: precision_at_5
|
1457 |
+
value: 24.964
|
1458 |
+
- type: recall_at_1
|
1459 |
+
value: 42.728
|
1460 |
+
- type: recall_at_10
|
1461 |
+
value: 67.252
|
1462 |
+
- type: recall_at_100
|
1463 |
+
value: 77.265
|
1464 |
+
- type: recall_at_1000
|
1465 |
+
value: 85.246
|
1466 |
+
- type: recall_at_3
|
1467 |
+
value: 58.292
|
1468 |
+
- type: recall_at_5
|
1469 |
+
value: 62.41100000000001
|
1470 |
+
- task:
|
1471 |
+
type: Classification
|
1472 |
+
dataset:
|
1473 |
+
type: mteb/imdb
|
1474 |
+
name: MTEB ImdbClassification
|
1475 |
+
config: default
|
1476 |
+
split: test
|
1477 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1478 |
+
metrics:
|
1479 |
+
- type: accuracy
|
1480 |
+
value: 87.4836
|
1481 |
+
- type: ap
|
1482 |
+
value: 82.29552224030336
|
1483 |
+
- type: f1
|
1484 |
+
value: 87.42791432227448
|
1485 |
+
- task:
|
1486 |
+
type: Retrieval
|
1487 |
+
dataset:
|
1488 |
+
type: mteb/msmarco
|
1489 |
+
name: MTEB MSMARCO
|
1490 |
+
config: default
|
1491 |
+
split: dev
|
1492 |
+
revision: c5a29a104738b98a9e76336939199e264163d4a0
|
1493 |
+
metrics:
|
1494 |
+
- type: map_at_1
|
1495 |
+
value: 23.015
|
1496 |
+
- type: map_at_10
|
1497 |
+
value: 35.621
|
1498 |
+
- type: map_at_100
|
1499 |
+
value: 36.809
|
1500 |
+
- type: map_at_1000
|
1501 |
+
value: 36.853
|
1502 |
+
- type: map_at_3
|
1503 |
+
value: 31.832
|
1504 |
+
- type: map_at_5
|
1505 |
+
value: 34.006
|
1506 |
+
- type: mrr_at_1
|
1507 |
+
value: 23.738999999999997
|
1508 |
+
- type: mrr_at_10
|
1509 |
+
value: 36.309999999999995
|
1510 |
+
- type: mrr_at_100
|
1511 |
+
value: 37.422
|
1512 |
+
- type: mrr_at_1000
|
1513 |
+
value: 37.461
|
1514 |
+
- type: mrr_at_3
|
1515 |
+
value: 32.592999999999996
|
1516 |
+
- type: mrr_at_5
|
1517 |
+
value: 34.736
|
1518 |
+
- type: ndcg_at_1
|
1519 |
+
value: 23.724999999999998
|
1520 |
+
- type: ndcg_at_10
|
1521 |
+
value: 42.617
|
1522 |
+
- type: ndcg_at_100
|
1523 |
+
value: 48.217999999999996
|
1524 |
+
- type: ndcg_at_1000
|
1525 |
+
value: 49.309
|
1526 |
+
- type: ndcg_at_3
|
1527 |
+
value: 34.905
|
1528 |
+
- type: ndcg_at_5
|
1529 |
+
value: 38.769
|
1530 |
+
- type: precision_at_1
|
1531 |
+
value: 23.724999999999998
|
1532 |
+
- type: precision_at_10
|
1533 |
+
value: 6.689
|
1534 |
+
- type: precision_at_100
|
1535 |
+
value: 0.9480000000000001
|
1536 |
+
- type: precision_at_1000
|
1537 |
+
value: 0.104
|
1538 |
+
- type: precision_at_3
|
1539 |
+
value: 14.89
|
1540 |
+
- type: precision_at_5
|
1541 |
+
value: 10.897
|
1542 |
+
- type: recall_at_1
|
1543 |
+
value: 23.015
|
1544 |
+
- type: recall_at_10
|
1545 |
+
value: 64.041
|
1546 |
+
- type: recall_at_100
|
1547 |
+
value: 89.724
|
1548 |
+
- type: recall_at_1000
|
1549 |
+
value: 98.00999999999999
|
1550 |
+
- type: recall_at_3
|
1551 |
+
value: 43.064
|
1552 |
+
- type: recall_at_5
|
1553 |
+
value: 52.31099999999999
|
1554 |
+
- task:
|
1555 |
+
type: Classification
|
1556 |
+
dataset:
|
1557 |
+
type: mteb/mtop_domain
|
1558 |
+
name: MTEB MTOPDomainClassification (en)
|
1559 |
+
config: en
|
1560 |
+
split: test
|
1561 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1562 |
+
metrics:
|
1563 |
+
- type: accuracy
|
1564 |
+
value: 96.49794801641588
|
1565 |
+
- type: f1
|
1566 |
+
value: 96.28931114498003
|
1567 |
+
- task:
|
1568 |
+
type: Classification
|
1569 |
+
dataset:
|
1570 |
+
type: mteb/mtop_intent
|
1571 |
+
name: MTEB MTOPIntentClassification (en)
|
1572 |
+
config: en
|
1573 |
+
split: test
|
1574 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1575 |
+
metrics:
|
1576 |
+
- type: accuracy
|
1577 |
+
value: 82.81121751025992
|
1578 |
+
- type: f1
|
1579 |
+
value: 63.18740125901853
|
1580 |
+
- task:
|
1581 |
+
type: Classification
|
1582 |
+
dataset:
|
1583 |
+
type: mteb/amazon_massive_intent
|
1584 |
+
name: MTEB MassiveIntentClassification (en)
|
1585 |
+
config: en
|
1586 |
+
split: test
|
1587 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1588 |
+
metrics:
|
1589 |
+
- type: accuracy
|
1590 |
+
value: 77.66644250168123
|
1591 |
+
- type: f1
|
1592 |
+
value: 74.93211186867839
|
1593 |
+
- task:
|
1594 |
+
type: Classification
|
1595 |
+
dataset:
|
1596 |
+
type: mteb/amazon_massive_scenario
|
1597 |
+
name: MTEB MassiveScenarioClassification (en)
|
1598 |
+
config: en
|
1599 |
+
split: test
|
1600 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1601 |
+
metrics:
|
1602 |
+
- type: accuracy
|
1603 |
+
value: 81.77202420981843
|
1604 |
+
- type: f1
|
1605 |
+
value: 81.63681969283554
|
1606 |
+
- task:
|
1607 |
+
type: Clustering
|
1608 |
+
dataset:
|
1609 |
+
type: mteb/medrxiv-clustering-p2p
|
1610 |
+
name: MTEB MedrxivClusteringP2P
|
1611 |
+
config: default
|
1612 |
+
split: test
|
1613 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1614 |
+
metrics:
|
1615 |
+
- type: v_measure
|
1616 |
+
value: 34.596687684870645
|
1617 |
+
- task:
|
1618 |
+
type: Clustering
|
1619 |
+
dataset:
|
1620 |
+
type: mteb/medrxiv-clustering-s2s
|
1621 |
+
name: MTEB MedrxivClusteringS2S
|
1622 |
+
config: default
|
1623 |
+
split: test
|
1624 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1625 |
+
metrics:
|
1626 |
+
- type: v_measure
|
1627 |
+
value: 32.26965660101405
|
1628 |
+
- task:
|
1629 |
+
type: Reranking
|
1630 |
+
dataset:
|
1631 |
+
type: mteb/mind_small
|
1632 |
+
name: MTEB MindSmallReranking
|
1633 |
+
config: default
|
1634 |
+
split: test
|
1635 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1636 |
+
metrics:
|
1637 |
+
- type: map
|
1638 |
+
value: 31.33619694846802
|
1639 |
+
- type: mrr
|
1640 |
+
value: 32.53719657720334
|
1641 |
+
- task:
|
1642 |
+
type: Retrieval
|
1643 |
+
dataset:
|
1644 |
+
type: mteb/nfcorpus
|
1645 |
+
name: MTEB NFCorpus
|
1646 |
+
config: default
|
1647 |
+
split: test
|
1648 |
+
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
|
1649 |
+
metrics:
|
1650 |
+
- type: map_at_1
|
1651 |
+
value: 6.0729999999999995
|
1652 |
+
- type: map_at_10
|
1653 |
+
value: 13.245999999999999
|
1654 |
+
- type: map_at_100
|
1655 |
+
value: 16.747999999999998
|
1656 |
+
- type: map_at_1000
|
1657 |
+
value: 18.163
|
1658 |
+
- type: map_at_3
|
1659 |
+
value: 10.064
|
1660 |
+
- type: map_at_5
|
1661 |
+
value: 11.513
|
1662 |
+
- type: mrr_at_1
|
1663 |
+
value: 49.536
|
1664 |
+
- type: mrr_at_10
|
1665 |
+
value: 58.092
|
1666 |
+
- type: mrr_at_100
|
1667 |
+
value: 58.752
|
1668 |
+
- type: mrr_at_1000
|
1669 |
+
value: 58.78
|
1670 |
+
- type: mrr_at_3
|
1671 |
+
value: 56.398
|
1672 |
+
- type: mrr_at_5
|
1673 |
+
value: 57.389
|
1674 |
+
- type: ndcg_at_1
|
1675 |
+
value: 47.059
|
1676 |
+
- type: ndcg_at_10
|
1677 |
+
value: 35.881
|
1678 |
+
- type: ndcg_at_100
|
1679 |
+
value: 32.751999999999995
|
1680 |
+
- type: ndcg_at_1000
|
1681 |
+
value: 41.498000000000005
|
1682 |
+
- type: ndcg_at_3
|
1683 |
+
value: 42.518
|
1684 |
+
- type: ndcg_at_5
|
1685 |
+
value: 39.550999999999995
|
1686 |
+
- type: precision_at_1
|
1687 |
+
value: 49.536
|
1688 |
+
- type: precision_at_10
|
1689 |
+
value: 26.316
|
1690 |
+
- type: precision_at_100
|
1691 |
+
value: 8.084
|
1692 |
+
- type: precision_at_1000
|
1693 |
+
value: 2.081
|
1694 |
+
- type: precision_at_3
|
1695 |
+
value: 39.938
|
1696 |
+
- type: precision_at_5
|
1697 |
+
value: 34.056
|
1698 |
+
- type: recall_at_1
|
1699 |
+
value: 6.0729999999999995
|
1700 |
+
- type: recall_at_10
|
1701 |
+
value: 16.593
|
1702 |
+
- type: recall_at_100
|
1703 |
+
value: 32.883
|
1704 |
+
- type: recall_at_1000
|
1705 |
+
value: 64.654
|
1706 |
+
- type: recall_at_3
|
1707 |
+
value: 11.174000000000001
|
1708 |
+
- type: recall_at_5
|
1709 |
+
value: 13.528
|
1710 |
+
- task:
|
1711 |
+
type: Retrieval
|
1712 |
+
dataset:
|
1713 |
+
type: mteb/nq
|
1714 |
+
name: MTEB NQ
|
1715 |
+
config: default
|
1716 |
+
split: test
|
1717 |
+
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
|
1718 |
+
metrics:
|
1719 |
+
- type: map_at_1
|
1720 |
+
value: 30.043
|
1721 |
+
- type: map_at_10
|
1722 |
+
value: 45.318999999999996
|
1723 |
+
- type: map_at_100
|
1724 |
+
value: 46.381
|
1725 |
+
- type: map_at_1000
|
1726 |
+
value: 46.412
|
1727 |
+
- type: map_at_3
|
1728 |
+
value: 40.941
|
1729 |
+
- type: map_at_5
|
1730 |
+
value: 43.662
|
1731 |
+
- type: mrr_at_1
|
1732 |
+
value: 33.98
|
1733 |
+
- type: mrr_at_10
|
1734 |
+
value: 47.870000000000005
|
1735 |
+
- type: mrr_at_100
|
1736 |
+
value: 48.681999999999995
|
1737 |
+
- type: mrr_at_1000
|
1738 |
+
value: 48.703
|
1739 |
+
- type: mrr_at_3
|
1740 |
+
value: 44.341
|
1741 |
+
- type: mrr_at_5
|
1742 |
+
value: 46.547
|
1743 |
+
- type: ndcg_at_1
|
1744 |
+
value: 33.98
|
1745 |
+
- type: ndcg_at_10
|
1746 |
+
value: 52.957
|
1747 |
+
- type: ndcg_at_100
|
1748 |
+
value: 57.434
|
1749 |
+
- type: ndcg_at_1000
|
1750 |
+
value: 58.103
|
1751 |
+
- type: ndcg_at_3
|
1752 |
+
value: 44.896
|
1753 |
+
- type: ndcg_at_5
|
1754 |
+
value: 49.353
|
1755 |
+
- type: precision_at_1
|
1756 |
+
value: 33.98
|
1757 |
+
- type: precision_at_10
|
1758 |
+
value: 8.786
|
1759 |
+
- type: precision_at_100
|
1760 |
+
value: 1.1280000000000001
|
1761 |
+
- type: precision_at_1000
|
1762 |
+
value: 0.11900000000000001
|
1763 |
+
- type: precision_at_3
|
1764 |
+
value: 20.577
|
1765 |
+
- type: precision_at_5
|
1766 |
+
value: 14.942
|
1767 |
+
- type: recall_at_1
|
1768 |
+
value: 30.043
|
1769 |
+
- type: recall_at_10
|
1770 |
+
value: 73.593
|
1771 |
+
- type: recall_at_100
|
1772 |
+
value: 93.026
|
1773 |
+
- type: recall_at_1000
|
1774 |
+
value: 97.943
|
1775 |
+
- type: recall_at_3
|
1776 |
+
value: 52.955
|
1777 |
+
- type: recall_at_5
|
1778 |
+
value: 63.132
|
1779 |
+
- task:
|
1780 |
+
type: Retrieval
|
1781 |
+
dataset:
|
1782 |
+
type: mteb/quora
|
1783 |
+
name: MTEB QuoraRetrieval
|
1784 |
+
config: default
|
1785 |
+
split: test
|
1786 |
+
revision: None
|
1787 |
+
metrics:
|
1788 |
+
- type: map_at_1
|
1789 |
+
value: 70.808
|
1790 |
+
- type: map_at_10
|
1791 |
+
value: 84.675
|
1792 |
+
- type: map_at_100
|
1793 |
+
value: 85.322
|
1794 |
+
- type: map_at_1000
|
1795 |
+
value: 85.33800000000001
|
1796 |
+
- type: map_at_3
|
1797 |
+
value: 81.68900000000001
|
1798 |
+
- type: map_at_5
|
1799 |
+
value: 83.543
|
1800 |
+
- type: mrr_at_1
|
1801 |
+
value: 81.5
|
1802 |
+
- type: mrr_at_10
|
1803 |
+
value: 87.59700000000001
|
1804 |
+
- type: mrr_at_100
|
1805 |
+
value: 87.705
|
1806 |
+
- type: mrr_at_1000
|
1807 |
+
value: 87.70599999999999
|
1808 |
+
- type: mrr_at_3
|
1809 |
+
value: 86.607
|
1810 |
+
- type: mrr_at_5
|
1811 |
+
value: 87.289
|
1812 |
+
- type: ndcg_at_1
|
1813 |
+
value: 81.51
|
1814 |
+
- type: ndcg_at_10
|
1815 |
+
value: 88.41799999999999
|
1816 |
+
- type: ndcg_at_100
|
1817 |
+
value: 89.644
|
1818 |
+
- type: ndcg_at_1000
|
1819 |
+
value: 89.725
|
1820 |
+
- type: ndcg_at_3
|
1821 |
+
value: 85.49900000000001
|
1822 |
+
- type: ndcg_at_5
|
1823 |
+
value: 87.078
|
1824 |
+
- type: precision_at_1
|
1825 |
+
value: 81.51
|
1826 |
+
- type: precision_at_10
|
1827 |
+
value: 13.438
|
1828 |
+
- type: precision_at_100
|
1829 |
+
value: 1.532
|
1830 |
+
- type: precision_at_1000
|
1831 |
+
value: 0.157
|
1832 |
+
- type: precision_at_3
|
1833 |
+
value: 37.363
|
1834 |
+
- type: precision_at_5
|
1835 |
+
value: 24.57
|
1836 |
+
- type: recall_at_1
|
1837 |
+
value: 70.808
|
1838 |
+
- type: recall_at_10
|
1839 |
+
value: 95.575
|
1840 |
+
- type: recall_at_100
|
1841 |
+
value: 99.667
|
1842 |
+
- type: recall_at_1000
|
1843 |
+
value: 99.98899999999999
|
1844 |
+
- type: recall_at_3
|
1845 |
+
value: 87.223
|
1846 |
+
- type: recall_at_5
|
1847 |
+
value: 91.682
|
1848 |
+
- task:
|
1849 |
+
type: Clustering
|
1850 |
+
dataset:
|
1851 |
+
type: mteb/reddit-clustering
|
1852 |
+
name: MTEB RedditClustering
|
1853 |
+
config: default
|
1854 |
+
split: test
|
1855 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1856 |
+
metrics:
|
1857 |
+
- type: v_measure
|
1858 |
+
value: 58.614831329137715
|
1859 |
+
- task:
|
1860 |
+
type: Clustering
|
1861 |
+
dataset:
|
1862 |
+
type: mteb/reddit-clustering-p2p
|
1863 |
+
name: MTEB RedditClusteringP2P
|
1864 |
+
config: default
|
1865 |
+
split: test
|
1866 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1867 |
+
metrics:
|
1868 |
+
- type: v_measure
|
1869 |
+
value: 66.86580408560826
|
1870 |
+
- task:
|
1871 |
+
type: Retrieval
|
1872 |
+
dataset:
|
1873 |
+
type: mteb/scidocs
|
1874 |
+
name: MTEB SCIDOCS
|
1875 |
+
config: default
|
1876 |
+
split: test
|
1877 |
+
revision: None
|
1878 |
+
metrics:
|
1879 |
+
- type: map_at_1
|
1880 |
+
value: 5.093
|
1881 |
+
- type: map_at_10
|
1882 |
+
value: 13.014000000000001
|
1883 |
+
- type: map_at_100
|
1884 |
+
value: 15.412999999999998
|
1885 |
+
- type: map_at_1000
|
1886 |
+
value: 15.756999999999998
|
1887 |
+
- type: map_at_3
|
1888 |
+
value: 9.216000000000001
|
1889 |
+
- type: map_at_5
|
1890 |
+
value: 11.036999999999999
|
1891 |
+
- type: mrr_at_1
|
1892 |
+
value: 25.1
|
1893 |
+
- type: mrr_at_10
|
1894 |
+
value: 37.133
|
1895 |
+
- type: mrr_at_100
|
1896 |
+
value: 38.165
|
1897 |
+
- type: mrr_at_1000
|
1898 |
+
value: 38.198
|
1899 |
+
- type: mrr_at_3
|
1900 |
+
value: 33.217
|
1901 |
+
- type: mrr_at_5
|
1902 |
+
value: 35.732
|
1903 |
+
- type: ndcg_at_1
|
1904 |
+
value: 25.1
|
1905 |
+
- type: ndcg_at_10
|
1906 |
+
value: 21.918000000000003
|
1907 |
+
- type: ndcg_at_100
|
1908 |
+
value: 30.983
|
1909 |
+
- type: ndcg_at_1000
|
1910 |
+
value: 36.629
|
1911 |
+
- type: ndcg_at_3
|
1912 |
+
value: 20.544999999999998
|
1913 |
+
- type: ndcg_at_5
|
1914 |
+
value: 18.192
|
1915 |
+
- type: precision_at_1
|
1916 |
+
value: 25.1
|
1917 |
+
- type: precision_at_10
|
1918 |
+
value: 11.44
|
1919 |
+
- type: precision_at_100
|
1920 |
+
value: 2.459
|
1921 |
+
- type: precision_at_1000
|
1922 |
+
value: 0.381
|
1923 |
+
- type: precision_at_3
|
1924 |
+
value: 19.267
|
1925 |
+
- type: precision_at_5
|
1926 |
+
value: 16.16
|
1927 |
+
- type: recall_at_1
|
1928 |
+
value: 5.093
|
1929 |
+
- type: recall_at_10
|
1930 |
+
value: 23.215
|
1931 |
+
- type: recall_at_100
|
1932 |
+
value: 49.902
|
1933 |
+
- type: recall_at_1000
|
1934 |
+
value: 77.403
|
1935 |
+
- type: recall_at_3
|
1936 |
+
value: 11.733
|
1937 |
+
- type: recall_at_5
|
1938 |
+
value: 16.372999999999998
|
1939 |
+
- task:
|
1940 |
+
type: STS
|
1941 |
+
dataset:
|
1942 |
+
type: mteb/sickr-sts
|
1943 |
+
name: MTEB SICK-R
|
1944 |
+
config: default
|
1945 |
+
split: test
|
1946 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1947 |
+
metrics:
|
1948 |
+
- type: cos_sim_pearson
|
1949 |
+
value: 82.9365442977452
|
1950 |
+
- type: cos_sim_spearman
|
1951 |
+
value: 79.36960687383745
|
1952 |
+
- type: euclidean_pearson
|
1953 |
+
value: 79.6045204840714
|
1954 |
+
- type: euclidean_spearman
|
1955 |
+
value: 79.26382712751337
|
1956 |
+
- type: manhattan_pearson
|
1957 |
+
value: 79.4805084789529
|
1958 |
+
- type: manhattan_spearman
|
1959 |
+
value: 79.21847863209523
|
1960 |
+
- task:
|
1961 |
+
type: STS
|
1962 |
+
dataset:
|
1963 |
+
type: mteb/sts12-sts
|
1964 |
+
name: MTEB STS12
|
1965 |
+
config: default
|
1966 |
+
split: test
|
1967 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1968 |
+
metrics:
|
1969 |
+
- type: cos_sim_pearson
|
1970 |
+
value: 83.27906192961453
|
1971 |
+
- type: cos_sim_spearman
|
1972 |
+
value: 74.38364712099211
|
1973 |
+
- type: euclidean_pearson
|
1974 |
+
value: 78.54358927241223
|
1975 |
+
- type: euclidean_spearman
|
1976 |
+
value: 74.22185560806376
|
1977 |
+
- type: manhattan_pearson
|
1978 |
+
value: 78.50904327377751
|
1979 |
+
- type: manhattan_spearman
|
1980 |
+
value: 74.2627500781748
|
1981 |
+
- task:
|
1982 |
+
type: STS
|
1983 |
+
dataset:
|
1984 |
+
type: mteb/sts13-sts
|
1985 |
+
name: MTEB STS13
|
1986 |
+
config: default
|
1987 |
+
split: test
|
1988 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1989 |
+
metrics:
|
1990 |
+
- type: cos_sim_pearson
|
1991 |
+
value: 84.66863742649639
|
1992 |
+
- type: cos_sim_spearman
|
1993 |
+
value: 84.70630905216271
|
1994 |
+
- type: euclidean_pearson
|
1995 |
+
value: 84.64498334705334
|
1996 |
+
- type: euclidean_spearman
|
1997 |
+
value: 84.87204770690148
|
1998 |
+
- type: manhattan_pearson
|
1999 |
+
value: 84.65774227976077
|
2000 |
+
- type: manhattan_spearman
|
2001 |
+
value: 84.91251851797985
|
2002 |
+
- task:
|
2003 |
+
type: STS
|
2004 |
+
dataset:
|
2005 |
+
type: mteb/sts14-sts
|
2006 |
+
name: MTEB STS14
|
2007 |
+
config: default
|
2008 |
+
split: test
|
2009 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2010 |
+
metrics:
|
2011 |
+
- type: cos_sim_pearson
|
2012 |
+
value: 83.1577763924467
|
2013 |
+
- type: cos_sim_spearman
|
2014 |
+
value: 80.10314039230198
|
2015 |
+
- type: euclidean_pearson
|
2016 |
+
value: 81.51346991046043
|
2017 |
+
- type: euclidean_spearman
|
2018 |
+
value: 80.08678485109435
|
2019 |
+
- type: manhattan_pearson
|
2020 |
+
value: 81.57058914661894
|
2021 |
+
- type: manhattan_spearman
|
2022 |
+
value: 80.1516230725106
|
2023 |
+
- task:
|
2024 |
+
type: STS
|
2025 |
+
dataset:
|
2026 |
+
type: mteb/sts15-sts
|
2027 |
+
name: MTEB STS15
|
2028 |
+
config: default
|
2029 |
+
split: test
|
2030 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2031 |
+
metrics:
|
2032 |
+
- type: cos_sim_pearson
|
2033 |
+
value: 86.40310839662533
|
2034 |
+
- type: cos_sim_spearman
|
2035 |
+
value: 87.16293477217867
|
2036 |
+
- type: euclidean_pearson
|
2037 |
+
value: 86.50688711184775
|
2038 |
+
- type: euclidean_spearman
|
2039 |
+
value: 87.08651444923031
|
2040 |
+
- type: manhattan_pearson
|
2041 |
+
value: 86.54674677557857
|
2042 |
+
- type: manhattan_spearman
|
2043 |
+
value: 87.15079017870971
|
2044 |
+
- task:
|
2045 |
+
type: STS
|
2046 |
+
dataset:
|
2047 |
+
type: mteb/sts16-sts
|
2048 |
+
name: MTEB STS16
|
2049 |
+
config: default
|
2050 |
+
split: test
|
2051 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2052 |
+
metrics:
|
2053 |
+
- type: cos_sim_pearson
|
2054 |
+
value: 84.32886275207817
|
2055 |
+
- type: cos_sim_spearman
|
2056 |
+
value: 85.0190460590732
|
2057 |
+
- type: euclidean_pearson
|
2058 |
+
value: 84.42553652784679
|
2059 |
+
- type: euclidean_spearman
|
2060 |
+
value: 85.20027364279328
|
2061 |
+
- type: manhattan_pearson
|
2062 |
+
value: 84.42926246281078
|
2063 |
+
- type: manhattan_spearman
|
2064 |
+
value: 85.20187419804306
|
2065 |
+
- task:
|
2066 |
+
type: STS
|
2067 |
+
dataset:
|
2068 |
+
type: mteb/sts17-crosslingual-sts
|
2069 |
+
name: MTEB STS17 (en-en)
|
2070 |
+
config: en-en
|
2071 |
+
split: test
|
2072 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2073 |
+
metrics:
|
2074 |
+
- type: cos_sim_pearson
|
2075 |
+
value: 90.76732216967812
|
2076 |
+
- type: cos_sim_spearman
|
2077 |
+
value: 90.63701653633909
|
2078 |
+
- type: euclidean_pearson
|
2079 |
+
value: 90.26678186114682
|
2080 |
+
- type: euclidean_spearman
|
2081 |
+
value: 90.67288073455427
|
2082 |
+
- type: manhattan_pearson
|
2083 |
+
value: 90.20772020584582
|
2084 |
+
- type: manhattan_spearman
|
2085 |
+
value: 90.60764863983702
|
2086 |
+
- task:
|
2087 |
+
type: STS
|
2088 |
+
dataset:
|
2089 |
+
type: mteb/sts22-crosslingual-sts
|
2090 |
+
name: MTEB STS22 (en)
|
2091 |
+
config: en
|
2092 |
+
split: test
|
2093 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
2094 |
+
metrics:
|
2095 |
+
- type: cos_sim_pearson
|
2096 |
+
value: 69.09280387698125
|
2097 |
+
- type: cos_sim_spearman
|
2098 |
+
value: 68.62743151172162
|
2099 |
+
- type: euclidean_pearson
|
2100 |
+
value: 69.89386398104689
|
2101 |
+
- type: euclidean_spearman
|
2102 |
+
value: 68.71191066733556
|
2103 |
+
- type: manhattan_pearson
|
2104 |
+
value: 69.92516500604872
|
2105 |
+
- type: manhattan_spearman
|
2106 |
+
value: 68.80452846992576
|
2107 |
+
- task:
|
2108 |
+
type: STS
|
2109 |
+
dataset:
|
2110 |
+
type: mteb/stsbenchmark-sts
|
2111 |
+
name: MTEB STSBenchmark
|
2112 |
+
config: default
|
2113 |
+
split: test
|
2114 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2115 |
+
metrics:
|
2116 |
+
- type: cos_sim_pearson
|
2117 |
+
value: 86.13178592019887
|
2118 |
+
- type: cos_sim_spearman
|
2119 |
+
value: 86.03947178806887
|
2120 |
+
- type: euclidean_pearson
|
2121 |
+
value: 85.87029414285313
|
2122 |
+
- type: euclidean_spearman
|
2123 |
+
value: 86.04960843306998
|
2124 |
+
- type: manhattan_pearson
|
2125 |
+
value: 85.92946858580146
|
2126 |
+
- type: manhattan_spearman
|
2127 |
+
value: 86.12575341860442
|
2128 |
+
- task:
|
2129 |
+
type: Reranking
|
2130 |
+
dataset:
|
2131 |
+
type: mteb/scidocs-reranking
|
2132 |
+
name: MTEB SciDocsRR
|
2133 |
+
config: default
|
2134 |
+
split: test
|
2135 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2136 |
+
metrics:
|
2137 |
+
- type: map
|
2138 |
+
value: 85.16657063002837
|
2139 |
+
- type: mrr
|
2140 |
+
value: 95.73671063867141
|
2141 |
+
- task:
|
2142 |
+
type: Retrieval
|
2143 |
+
dataset:
|
2144 |
+
type: mteb/scifact
|
2145 |
+
name: MTEB SciFact
|
2146 |
+
config: default
|
2147 |
+
split: test
|
2148 |
+
revision: 0228b52cf27578f30900b9e5271d331663a030d7
|
2149 |
+
metrics:
|
2150 |
+
- type: map_at_1
|
2151 |
+
value: 63.510999999999996
|
2152 |
+
- type: map_at_10
|
2153 |
+
value: 72.76899999999999
|
2154 |
+
- type: map_at_100
|
2155 |
+
value: 73.303
|
2156 |
+
- type: map_at_1000
|
2157 |
+
value: 73.32499999999999
|
2158 |
+
- type: map_at_3
|
2159 |
+
value: 70.514
|
2160 |
+
- type: map_at_5
|
2161 |
+
value: 71.929
|
2162 |
+
- type: mrr_at_1
|
2163 |
+
value: 66.333
|
2164 |
+
- type: mrr_at_10
|
2165 |
+
value: 73.75
|
2166 |
+
- type: mrr_at_100
|
2167 |
+
value: 74.119
|
2168 |
+
- type: mrr_at_1000
|
2169 |
+
value: 74.138
|
2170 |
+
- type: mrr_at_3
|
2171 |
+
value: 72.222
|
2172 |
+
- type: mrr_at_5
|
2173 |
+
value: 73.122
|
2174 |
+
- type: ndcg_at_1
|
2175 |
+
value: 66.333
|
2176 |
+
- type: ndcg_at_10
|
2177 |
+
value: 76.774
|
2178 |
+
- type: ndcg_at_100
|
2179 |
+
value: 78.78500000000001
|
2180 |
+
- type: ndcg_at_1000
|
2181 |
+
value: 79.254
|
2182 |
+
- type: ndcg_at_3
|
2183 |
+
value: 73.088
|
2184 |
+
- type: ndcg_at_5
|
2185 |
+
value: 75.002
|
2186 |
+
- type: precision_at_1
|
2187 |
+
value: 66.333
|
2188 |
+
- type: precision_at_10
|
2189 |
+
value: 9.833
|
2190 |
+
- type: precision_at_100
|
2191 |
+
value: 1.093
|
2192 |
+
- type: precision_at_1000
|
2193 |
+
value: 0.11299999999999999
|
2194 |
+
- type: precision_at_3
|
2195 |
+
value: 28.222
|
2196 |
+
- type: precision_at_5
|
2197 |
+
value: 18.333
|
2198 |
+
- type: recall_at_1
|
2199 |
+
value: 63.510999999999996
|
2200 |
+
- type: recall_at_10
|
2201 |
+
value: 87.98899999999999
|
2202 |
+
- type: recall_at_100
|
2203 |
+
value: 96.5
|
2204 |
+
- type: recall_at_1000
|
2205 |
+
value: 100.0
|
2206 |
+
- type: recall_at_3
|
2207 |
+
value: 77.86699999999999
|
2208 |
+
- type: recall_at_5
|
2209 |
+
value: 82.73899999999999
|
2210 |
+
- task:
|
2211 |
+
type: PairClassification
|
2212 |
+
dataset:
|
2213 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2214 |
+
name: MTEB SprintDuplicateQuestions
|
2215 |
+
config: default
|
2216 |
+
split: test
|
2217 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2218 |
+
metrics:
|
2219 |
+
- type: cos_sim_accuracy
|
2220 |
+
value: 99.78514851485149
|
2221 |
+
- type: cos_sim_ap
|
2222 |
+
value: 94.94214383862038
|
2223 |
+
- type: cos_sim_f1
|
2224 |
+
value: 89.02255639097744
|
2225 |
+
- type: cos_sim_precision
|
2226 |
+
value: 89.2462311557789
|
2227 |
+
- type: cos_sim_recall
|
2228 |
+
value: 88.8
|
2229 |
+
- type: dot_accuracy
|
2230 |
+
value: 99.78217821782178
|
2231 |
+
- type: dot_ap
|
2232 |
+
value: 94.69965247836805
|
2233 |
+
- type: dot_f1
|
2234 |
+
value: 88.78695208970439
|
2235 |
+
- type: dot_precision
|
2236 |
+
value: 90.54054054054053
|
2237 |
+
- type: dot_recall
|
2238 |
+
value: 87.1
|
2239 |
+
- type: euclidean_accuracy
|
2240 |
+
value: 99.78118811881188
|
2241 |
+
- type: euclidean_ap
|
2242 |
+
value: 94.9865187695411
|
2243 |
+
- type: euclidean_f1
|
2244 |
+
value: 88.99950223992036
|
2245 |
+
- type: euclidean_precision
|
2246 |
+
value: 88.60257680872151
|
2247 |
+
- type: euclidean_recall
|
2248 |
+
value: 89.4
|
2249 |
+
- type: manhattan_accuracy
|
2250 |
+
value: 99.78811881188119
|
2251 |
+
- type: manhattan_ap
|
2252 |
+
value: 95.0021236766459
|
2253 |
+
- type: manhattan_f1
|
2254 |
+
value: 89.12071535022356
|
2255 |
+
- type: manhattan_precision
|
2256 |
+
value: 88.54886475814413
|
2257 |
+
- type: manhattan_recall
|
2258 |
+
value: 89.7
|
2259 |
+
- type: max_accuracy
|
2260 |
+
value: 99.78811881188119
|
2261 |
+
- type: max_ap
|
2262 |
+
value: 95.0021236766459
|
2263 |
+
- type: max_f1
|
2264 |
+
value: 89.12071535022356
|
2265 |
+
- task:
|
2266 |
+
type: Clustering
|
2267 |
+
dataset:
|
2268 |
+
type: mteb/stackexchange-clustering
|
2269 |
+
name: MTEB StackExchangeClustering
|
2270 |
+
config: default
|
2271 |
+
split: test
|
2272 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2273 |
+
metrics:
|
2274 |
+
- type: v_measure
|
2275 |
+
value: 68.93190546593995
|
2276 |
+
- task:
|
2277 |
+
type: Clustering
|
2278 |
+
dataset:
|
2279 |
+
type: mteb/stackexchange-clustering-p2p
|
2280 |
+
name: MTEB StackExchangeClusteringP2P
|
2281 |
+
config: default
|
2282 |
+
split: test
|
2283 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2284 |
+
metrics:
|
2285 |
+
- type: v_measure
|
2286 |
+
value: 37.602808534760655
|
2287 |
+
- task:
|
2288 |
+
type: Reranking
|
2289 |
+
dataset:
|
2290 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2291 |
+
name: MTEB StackOverflowDupQuestions
|
2292 |
+
config: default
|
2293 |
+
split: test
|
2294 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2295 |
+
metrics:
|
2296 |
+
- type: map
|
2297 |
+
value: 52.29214480978073
|
2298 |
+
- type: mrr
|
2299 |
+
value: 53.123169722434426
|
2300 |
+
- task:
|
2301 |
+
type: Summarization
|
2302 |
+
dataset:
|
2303 |
+
type: mteb/summeval
|
2304 |
+
name: MTEB SummEval
|
2305 |
+
config: default
|
2306 |
+
split: test
|
2307 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2308 |
+
metrics:
|
2309 |
+
- type: cos_sim_pearson
|
2310 |
+
value: 30.967800769650022
|
2311 |
+
- type: cos_sim_spearman
|
2312 |
+
value: 31.168490040206926
|
2313 |
+
- type: dot_pearson
|
2314 |
+
value: 30.888603021128553
|
2315 |
+
- type: dot_spearman
|
2316 |
+
value: 31.028241262520385
|
2317 |
+
- task:
|
2318 |
+
type: Retrieval
|
2319 |
+
dataset:
|
2320 |
+
type: mteb/trec-covid
|
2321 |
+
name: MTEB TRECCOVID
|
2322 |
+
config: default
|
2323 |
+
split: test
|
2324 |
+
revision: None
|
2325 |
+
metrics:
|
2326 |
+
- type: map_at_1
|
2327 |
+
value: 0.22300000000000003
|
2328 |
+
- type: map_at_10
|
2329 |
+
value: 1.781
|
2330 |
+
- type: map_at_100
|
2331 |
+
value: 9.905999999999999
|
2332 |
+
- type: map_at_1000
|
2333 |
+
value: 23.455000000000002
|
2334 |
+
- type: map_at_3
|
2335 |
+
value: 0.569
|
2336 |
+
- type: map_at_5
|
2337 |
+
value: 0.918
|
2338 |
+
- type: mrr_at_1
|
2339 |
+
value: 84.0
|
2340 |
+
- type: mrr_at_10
|
2341 |
+
value: 91.067
|
2342 |
+
- type: mrr_at_100
|
2343 |
+
value: 91.067
|
2344 |
+
- type: mrr_at_1000
|
2345 |
+
value: 91.067
|
2346 |
+
- type: mrr_at_3
|
2347 |
+
value: 90.667
|
2348 |
+
- type: mrr_at_5
|
2349 |
+
value: 91.067
|
2350 |
+
- type: ndcg_at_1
|
2351 |
+
value: 78.0
|
2352 |
+
- type: ndcg_at_10
|
2353 |
+
value: 73.13499999999999
|
2354 |
+
- type: ndcg_at_100
|
2355 |
+
value: 55.32
|
2356 |
+
- type: ndcg_at_1000
|
2357 |
+
value: 49.532
|
2358 |
+
- type: ndcg_at_3
|
2359 |
+
value: 73.715
|
2360 |
+
- type: ndcg_at_5
|
2361 |
+
value: 72.74199999999999
|
2362 |
+
- type: precision_at_1
|
2363 |
+
value: 84.0
|
2364 |
+
- type: precision_at_10
|
2365 |
+
value: 78.8
|
2366 |
+
- type: precision_at_100
|
2367 |
+
value: 56.32
|
2368 |
+
- type: precision_at_1000
|
2369 |
+
value: 21.504
|
2370 |
+
- type: precision_at_3
|
2371 |
+
value: 77.333
|
2372 |
+
- type: precision_at_5
|
2373 |
+
value: 78.0
|
2374 |
+
- type: recall_at_1
|
2375 |
+
value: 0.22300000000000003
|
2376 |
+
- type: recall_at_10
|
2377 |
+
value: 2.049
|
2378 |
+
- type: recall_at_100
|
2379 |
+
value: 13.553
|
2380 |
+
- type: recall_at_1000
|
2381 |
+
value: 46.367999999999995
|
2382 |
+
- type: recall_at_3
|
2383 |
+
value: 0.604
|
2384 |
+
- type: recall_at_5
|
2385 |
+
value: 1.015
|
2386 |
+
- task:
|
2387 |
+
type: Retrieval
|
2388 |
+
dataset:
|
2389 |
+
type: mteb/touche2020
|
2390 |
+
name: MTEB Touche2020
|
2391 |
+
config: default
|
2392 |
+
split: test
|
2393 |
+
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
|
2394 |
+
metrics:
|
2395 |
+
- type: map_at_1
|
2396 |
+
value: 3.0380000000000003
|
2397 |
+
- type: map_at_10
|
2398 |
+
value: 10.188
|
2399 |
+
- type: map_at_100
|
2400 |
+
value: 16.395
|
2401 |
+
- type: map_at_1000
|
2402 |
+
value: 18.024
|
2403 |
+
- type: map_at_3
|
2404 |
+
value: 6.236
|
2405 |
+
- type: map_at_5
|
2406 |
+
value: 7.276000000000001
|
2407 |
+
- type: mrr_at_1
|
2408 |
+
value: 34.694
|
2409 |
+
- type: mrr_at_10
|
2410 |
+
value: 46.292
|
2411 |
+
- type: mrr_at_100
|
2412 |
+
value: 47.446
|
2413 |
+
- type: mrr_at_1000
|
2414 |
+
value: 47.446
|
2415 |
+
- type: mrr_at_3
|
2416 |
+
value: 41.156
|
2417 |
+
- type: mrr_at_5
|
2418 |
+
value: 44.32
|
2419 |
+
- type: ndcg_at_1
|
2420 |
+
value: 32.653
|
2421 |
+
- type: ndcg_at_10
|
2422 |
+
value: 25.219
|
2423 |
+
- type: ndcg_at_100
|
2424 |
+
value: 37.802
|
2425 |
+
- type: ndcg_at_1000
|
2426 |
+
value: 49.274
|
2427 |
+
- type: ndcg_at_3
|
2428 |
+
value: 28.605999999999998
|
2429 |
+
- type: ndcg_at_5
|
2430 |
+
value: 26.21
|
2431 |
+
- type: precision_at_1
|
2432 |
+
value: 34.694
|
2433 |
+
- type: precision_at_10
|
2434 |
+
value: 21.837
|
2435 |
+
- type: precision_at_100
|
2436 |
+
value: 7.776
|
2437 |
+
- type: precision_at_1000
|
2438 |
+
value: 1.522
|
2439 |
+
- type: precision_at_3
|
2440 |
+
value: 28.571
|
2441 |
+
- type: precision_at_5
|
2442 |
+
value: 25.306
|
2443 |
+
- type: recall_at_1
|
2444 |
+
value: 3.0380000000000003
|
2445 |
+
- type: recall_at_10
|
2446 |
+
value: 16.298000000000002
|
2447 |
+
- type: recall_at_100
|
2448 |
+
value: 48.712
|
2449 |
+
- type: recall_at_1000
|
2450 |
+
value: 83.16799999999999
|
2451 |
+
- type: recall_at_3
|
2452 |
+
value: 7.265000000000001
|
2453 |
+
- type: recall_at_5
|
2454 |
+
value: 9.551
|
2455 |
+
- task:
|
2456 |
+
type: Classification
|
2457 |
+
dataset:
|
2458 |
+
type: mteb/toxic_conversations_50k
|
2459 |
+
name: MTEB ToxicConversationsClassification
|
2460 |
+
config: default
|
2461 |
+
split: test
|
2462 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2463 |
+
metrics:
|
2464 |
+
- type: accuracy
|
2465 |
+
value: 83.978
|
2466 |
+
- type: ap
|
2467 |
+
value: 24.751887949330015
|
2468 |
+
- type: f1
|
2469 |
+
value: 66.8685134049279
|
2470 |
+
- task:
|
2471 |
+
type: Classification
|
2472 |
+
dataset:
|
2473 |
+
type: mteb/tweet_sentiment_extraction
|
2474 |
+
name: MTEB TweetSentimentExtractionClassification
|
2475 |
+
config: default
|
2476 |
+
split: test
|
2477 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2478 |
+
metrics:
|
2479 |
+
- type: accuracy
|
2480 |
+
value: 61.573288058856825
|
2481 |
+
- type: f1
|
2482 |
+
value: 61.973261751726604
|
2483 |
+
- task:
|
2484 |
+
type: Clustering
|
2485 |
+
dataset:
|
2486 |
+
type: mteb/twentynewsgroups-clustering
|
2487 |
+
name: MTEB TwentyNewsgroupsClustering
|
2488 |
+
config: default
|
2489 |
+
split: test
|
2490 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2491 |
+
metrics:
|
2492 |
+
- type: v_measure
|
2493 |
+
value: 48.75483298792469
|
2494 |
+
- task:
|
2495 |
+
type: PairClassification
|
2496 |
+
dataset:
|
2497 |
+
type: mteb/twittersemeval2015-pairclassification
|
2498 |
+
name: MTEB TwitterSemEval2015
|
2499 |
+
config: default
|
2500 |
+
split: test
|
2501 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2502 |
+
metrics:
|
2503 |
+
- type: cos_sim_accuracy
|
2504 |
+
value: 86.36824223639506
|
2505 |
+
- type: cos_sim_ap
|
2506 |
+
value: 75.53126388573047
|
2507 |
+
- type: cos_sim_f1
|
2508 |
+
value: 67.9912831688245
|
2509 |
+
- type: cos_sim_precision
|
2510 |
+
value: 66.11817501869858
|
2511 |
+
- type: cos_sim_recall
|
2512 |
+
value: 69.9736147757256
|
2513 |
+
- type: dot_accuracy
|
2514 |
+
value: 86.39804494248078
|
2515 |
+
- type: dot_ap
|
2516 |
+
value: 75.27598891718046
|
2517 |
+
- type: dot_f1
|
2518 |
+
value: 67.91146284159763
|
2519 |
+
- type: dot_precision
|
2520 |
+
value: 63.90505003490807
|
2521 |
+
- type: dot_recall
|
2522 |
+
value: 72.45382585751979
|
2523 |
+
- type: euclidean_accuracy
|
2524 |
+
value: 86.36228169517793
|
2525 |
+
- type: euclidean_ap
|
2526 |
+
value: 75.51438087434647
|
2527 |
+
- type: euclidean_f1
|
2528 |
+
value: 68.02370523061066
|
2529 |
+
- type: euclidean_precision
|
2530 |
+
value: 66.46525679758308
|
2531 |
+
- type: euclidean_recall
|
2532 |
+
value: 69.65699208443272
|
2533 |
+
- type: manhattan_accuracy
|
2534 |
+
value: 86.46361089586935
|
2535 |
+
- type: manhattan_ap
|
2536 |
+
value: 75.50800785730111
|
2537 |
+
- type: manhattan_f1
|
2538 |
+
value: 67.9220437187253
|
2539 |
+
- type: manhattan_precision
|
2540 |
+
value: 67.79705573080967
|
2541 |
+
- type: manhattan_recall
|
2542 |
+
value: 68.04749340369392
|
2543 |
+
- type: max_accuracy
|
2544 |
+
value: 86.46361089586935
|
2545 |
+
- type: max_ap
|
2546 |
+
value: 75.53126388573047
|
2547 |
+
- type: max_f1
|
2548 |
+
value: 68.02370523061066
|
2549 |
+
- task:
|
2550 |
+
type: PairClassification
|
2551 |
+
dataset:
|
2552 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2553 |
+
name: MTEB TwitterURLCorpus
|
2554 |
+
config: default
|
2555 |
+
split: test
|
2556 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2557 |
+
metrics:
|
2558 |
+
- type: cos_sim_accuracy
|
2559 |
+
value: 88.80350836341057
|
2560 |
+
- type: cos_sim_ap
|
2561 |
+
value: 85.51101933260743
|
2562 |
+
- type: cos_sim_f1
|
2563 |
+
value: 77.9152271629704
|
2564 |
+
- type: cos_sim_precision
|
2565 |
+
value: 75.27815662910056
|
2566 |
+
- type: cos_sim_recall
|
2567 |
+
value: 80.74376347397599
|
2568 |
+
- type: dot_accuracy
|
2569 |
+
value: 88.84425815966158
|
2570 |
+
- type: dot_ap
|
2571 |
+
value: 85.49726945962519
|
2572 |
+
- type: dot_f1
|
2573 |
+
value: 77.94445269567801
|
2574 |
+
- type: dot_precision
|
2575 |
+
value: 75.27251864601261
|
2576 |
+
- type: dot_recall
|
2577 |
+
value: 80.81305820757623
|
2578 |
+
- type: euclidean_accuracy
|
2579 |
+
value: 88.80350836341057
|
2580 |
+
- type: euclidean_ap
|
2581 |
+
value: 85.4882880790211
|
2582 |
+
- type: euclidean_f1
|
2583 |
+
value: 77.87063284615103
|
2584 |
+
- type: euclidean_precision
|
2585 |
+
value: 74.61022927689595
|
2586 |
+
- type: euclidean_recall
|
2587 |
+
value: 81.42901139513397
|
2588 |
+
- type: manhattan_accuracy
|
2589 |
+
value: 88.7161873714441
|
2590 |
+
- type: manhattan_ap
|
2591 |
+
value: 85.45753871906821
|
2592 |
+
- type: manhattan_f1
|
2593 |
+
value: 77.8686401480111
|
2594 |
+
- type: manhattan_precision
|
2595 |
+
value: 74.95903683123174
|
2596 |
+
- type: manhattan_recall
|
2597 |
+
value: 81.01324299353249
|
2598 |
+
- type: max_accuracy
|
2599 |
+
value: 88.84425815966158
|
2600 |
+
- type: max_ap
|
2601 |
+
value: 85.51101933260743
|
2602 |
+
- type: max_f1
|
2603 |
+
value: 77.94445269567801
|
2604 |
---
|
2605 |
+
|
2606 |
+
<!-- **English** | [中文](./README_zh.md) -->
|
2607 |
+
|
2608 |
+
# gte-base-en-v1.5
|
2609 |
+
|
2610 |
+
We introduce `gte-v1.5` series, upgraded `gte` embeddings that support the context length of up to **8192**.
|
2611 |
+
The models are built upon the `transformer++` encoder [backbone](https://huggingface.co/Alibaba-NLP/new-impl) (BERT + RoPE + GLU).
|
2612 |
+
|
2613 |
+
The `gte-v1.5` series achieve state-of-the-art scores on the MTEB benchmark within the same model size category and prodvide competitive on the LoCo long-context retrieval tests (refer to [Evaluation](#evaluation)).
|
2614 |
+
|
2615 |
+
We also present the [`gte-Qwen1.5-7B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct).
|
2616 |
+
|
2617 |
+
<!-- Provide a longer summary of what this model is. -->
|
2618 |
+
|
2619 |
+
- **Developed by:** Institute for Intelligent Computing, Alibaba Group
|
2620 |
+
- **Model type:** Text Embeddings
|
2621 |
+
- **Paper:** Coming soon.
|
2622 |
+
|
2623 |
+
<!-- - **Demo [optional]:** [More Information Needed] -->
|
2624 |
+
|
2625 |
+
### Model list
|
2626 |
+
|
2627 |
+
| Models | Language | Model Size | Max Seq. Length | Dimension | MTEB-en | LoCo |
|
2628 |
+
|:-----: | :-----: |:-----: |:-----: |:-----: | :-----: | :-----: |
|
2629 |
+
|[`gte-Qwen1.5-7B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct)| English | 7720 | 32768 | 4096 | 67.34 | 87.57 |
|
2630 |
+
|[`gte-large-en-v1.5`](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | English | 409 | 8192 | 1024 | 65.39 | 86.71 |
|
2631 |
+
|[`gte-base-en-v1.5`](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | English | 137 | 8192 | 768 | 64.11 | 87.44 |
|
2632 |
+
|
2633 |
+
|
2634 |
+
## How to Get Started with the Model
|
2635 |
+
|
2636 |
+
Use the code below to get started with the model.
|
2637 |
+
|
2638 |
+
```python
|
2639 |
+
import torch.nn.functional as F
|
2640 |
+
from transformers import AutoModel, AutoTokenizer
|
2641 |
+
|
2642 |
+
input_texts = [
|
2643 |
+
"what is the capital of China?",
|
2644 |
+
"how to implement quick sort in python?",
|
2645 |
+
"Beijing",
|
2646 |
+
"sorting algorithms"
|
2647 |
+
]
|
2648 |
+
|
2649 |
+
model_path = 'Alibaba-NLP/gte-base-en-v1.5'
|
2650 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
2651 |
+
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
2652 |
+
|
2653 |
+
# Tokenize the input texts
|
2654 |
+
batch_dict = tokenizer(input_texts, max_length=8192, padding=True, truncation=True, return_tensors='pt')
|
2655 |
+
|
2656 |
+
outputs = model(**batch_dict)
|
2657 |
+
embeddings = outputs.last_hidden_state[:, 0]
|
2658 |
+
|
2659 |
+
# (Optionally) normalize embeddings
|
2660 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
2661 |
+
scores = (embeddings[:1] @ embeddings[1:].T) * 100
|
2662 |
+
print(scores.tolist())
|
2663 |
+
```
|
2664 |
+
|
2665 |
+
**It is recommended to install xformers and enable unpadding for acceleration, refer to [enable-unpadding-and-xformers](https://huggingface.co/Alibaba-NLP/test-impl#recommendation-enable-unpadding-and-acceleration-with-xformers).**
|
2666 |
+
|
2667 |
+
|
2668 |
+
Use with sentence-transformers:
|
2669 |
+
|
2670 |
+
```python
|
2671 |
+
from sentence_transformers import SentenceTransformer
|
2672 |
+
from sentence_transformers.util import cos_sim
|
2673 |
+
|
2674 |
+
sentences = ['That is a happy person', 'That is a very happy person']
|
2675 |
+
|
2676 |
+
model = SentenceTransformer('Alibaba-NLP/gte-base-en-v1.5')
|
2677 |
+
embeddings = model.encode(sentences)
|
2678 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
2679 |
+
```
|
2680 |
+
|
2681 |
+
## Training Details
|
2682 |
+
|
2683 |
+
### Training Data
|
2684 |
+
|
2685 |
+
- Masked language modeling (MLM): `c4-en`
|
2686 |
+
- Weak-supervised contrastive (WSC) pre-training: GTE pre-training data
|
2687 |
+
- Supervised contrastive fine-tuning: GTE fine-tuning data
|
2688 |
+
|
2689 |
+
### Training Procedure
|
2690 |
+
|
2691 |
+
- MLM-2048: lr 5e-4, mlm_probability 0.3, batch_size 4096, num_steps 70000, rope_base 10000
|
2692 |
+
- MLM-8192: lr 5e-5, mlm_probability 0.3, batch_size 1024, num_steps 20000, rope_base 500000
|
2693 |
+
- WSC: max_len 512, lr 2e-4, batch_size 32768, num_steps 100000
|
2694 |
+
- Fine-tuning: TODO
|
2695 |
+
|
2696 |
+
|
2697 |
+
## Evaluation
|
2698 |
+
|
2699 |
+
|
2700 |
+
### MTEB
|
2701 |
+
|
2702 |
+
The gte results setting: `mteb==1.2.0, fp16 auto mix precision, max_length=8192`, and set ntk scaling factor to 2 (equivalent to rope_base * 2).
|
2703 |
+
|
2704 |
+
| Model Name | Param Size (M) | Dimension | Sequence Length | Average (56) | Class. (12) | Clust. (11) | Pair Class. (3) | Reran. (4) | Retr. (15) | STS (10) | Summ. (1) |
|
2705 |
+
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
2706 |
+
| [**gte-large-en-v1.5**](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 409 | 1024 | 8192 | **65.39** | 77.75 | 47.95 | 84.63 | 58.50 | 57.91 | 81.43 | 30.91 |
|
2707 |
+
| [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 335 | 1024 | 512 | 64.68 | 75.64 | 46.71 | 87.2 | 60.11 | 54.39 | 85 | 32.71 |
|
2708 |
+
| [multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) | 560 | 1024 | 514 | 64.41 | 77.56 | 47.1 | 86.19 | 58.58 | 52.47 | 84.78 | 30.39 |
|
2709 |
+
| [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5)| 335 | 1024 | 512 | 64.23 | 75.97 | 46.08 | 87.12 | 60.03 | 54.29 | 83.11 | 31.61 |
|
2710 |
+
| [**gte-base-en-v1.5**](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | 137 | 768 | 8192 | **64.11** | 77.17 | 46.82 | 85.33 | 57.66 | 54.09 | 81.97 | 31.17 |
|
2711 |
+
| [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)| 109 | 768 | 512 | 63.55 | 75.53 | 45.77 | 86.55 | 58.86 | 53.25 | 82.4 | 31.07 |
|
2712 |
+
|
2713 |
+
|
2714 |
+
### LoCo
|
2715 |
+
|
2716 |
+
| Model Name | Dimension | Sequence Length | Average (5) | QsmsumRetrieval | SummScreenRetrieval | QasperAbastractRetrieval | QasperTitleRetrieval | GovReportRetrieval |
|
2717 |
+
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
2718 |
+
| [gte-qwen1.5-7b](https://huggingface.co/Alibaba-NLP/gte-qwen1.5-7b) | 4096 | 32768 | 87.57 | 49.37 | 93.10 | 99.67 | 97.54 | 98.21 |
|
2719 |
+
| [gte-large-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-v1.5) |1024 | 8192 | 86.71 | 44.55 | 92.61 | 99.82 | 97.81 | 98.74 |
|
2720 |
+
| [gte-base-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-v1.5) | 768 | 8192 | 87.44 | 49.91 | 91.78 | 99.82 | 97.13 | 98.58 |
|
2721 |
+
|
2722 |
+
|
2723 |
+
|
2724 |
+
## Citation [TODO]
|
2725 |
+
|
2726 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
2727 |
+
|
2728 |
+
**BibTeX:**
|
2729 |
+
|
2730 |
+
[More Information Needed]
|
2731 |
+
|
2732 |
+
**APA:**
|
2733 |
+
|
2734 |
+
[More Information Needed]
|