File size: 1,799 Bytes
218e24d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162291b
218e24d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162291b
218e24d
 
 
 
 
162291b
 
 
 
 
 
 
 
 
 
218e24d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---

license: apache-2.0
base_model: Twitter/twhin-bert-large
tags:
- generated_from_trainer
model-index:
- name: model
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# model

This model is a fine-tuned version of [Twitter/twhin-bert-large](https://huggingface.co/Twitter/twhin-bert-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8996

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 300  | 2.1878          |
| 2.4077        | 2.0   | 600  | 2.0959          |
| 2.4077        | 3.0   | 900  | 2.1126          |
| 2.2053        | 4.0   | 1200 | 2.0066          |
| 2.0736        | 5.0   | 1500 | 1.9590          |
| 2.0736        | 6.0   | 1800 | 1.9668          |
| 2.0221        | 7.0   | 2100 | 1.9509          |
| 2.0221        | 8.0   | 2400 | 1.9274          |
| 1.9679        | 9.0   | 2700 | 1.8871          |
| 1.9687        | 10.0  | 3000 | 1.8996          |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.13.3