Pclanglais
commited on
Commit
•
083d82d
1
Parent(s):
65f29ef
Create finetuning.py
Browse files- finetuning.py +231 -0
finetuning.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
5 |
+
|
6 |
+
print(device)
|
7 |
+
|
8 |
+
|
9 |
+
from datasets import load_dataset
|
10 |
+
from transformers import (
|
11 |
+
AutoModelForCausalLM,
|
12 |
+
AutoTokenizer,
|
13 |
+
BitsAndBytesConfig,
|
14 |
+
HfArgumentParser,
|
15 |
+
TrainingArguments,
|
16 |
+
pipeline,
|
17 |
+
logging,
|
18 |
+
LlamaTokenizerFast
|
19 |
+
)
|
20 |
+
from peft import LoraConfig, PeftModel, get_peft_model
|
21 |
+
from trl import SFTTrainer
|
22 |
+
|
23 |
+
# Le modèle que nous allons utiliser dans le Hugging Face hub
|
24 |
+
model_name = "mistral-hermes"
|
25 |
+
|
26 |
+
torch.cuda.empty_cache()
|
27 |
+
|
28 |
+
#project_directory = "~/finetuning/sigmund-spplus"
|
29 |
+
|
30 |
+
# Le nom du nouveau modèle
|
31 |
+
new_model_name = "mistral-mfs-reference"
|
32 |
+
|
33 |
+
# The output directory where the model predictions and checkpoints will be written
|
34 |
+
output_dir = "./mistral-mfs-reference"
|
35 |
+
|
36 |
+
# Tensorboard logs
|
37 |
+
tb_log_dir = "./mistral-mfs-reference/logs"
|
38 |
+
|
39 |
+
# Nombre de steps : à ajuster selon la taille du corpus et le nombre d'epochs à faire tourner.
|
40 |
+
max_steps = 500
|
41 |
+
|
42 |
+
# Les paramètres importants !!
|
43 |
+
per_device_train_batch_size = 4 #Nombre d'exemples envoyés par batch. En mettre plus pour aller plus vite.
|
44 |
+
learning_rate = 2e-5 #De préférence un taux d'apprentissage bas comme Mistral-Hermes se débrouille bien en français
|
45 |
+
max_seq_length = 4096 #C'est la fenêtre contextuelle. Elle peut être portée jusqu'à 4096 tokens (mais attention à la mémoire disponible !)
|
46 |
+
save_steps = 1000 # Sauvegarde des steps (permet de faire redémarrer l'entraînement si le fine-tuning ne fonctionne pas)
|
47 |
+
# Learning rate schedule (constant a bit better than cosine, and has advantage for analysis)
|
48 |
+
lr_scheduler_type = "linear"
|
49 |
+
|
50 |
+
|
51 |
+
#Les autres paramètres
|
52 |
+
local_rank = -1
|
53 |
+
per_device_eval_batch_size = 1
|
54 |
+
gradient_accumulation_steps = 4
|
55 |
+
max_grad_norm = 0.3
|
56 |
+
weight_decay = 0.001
|
57 |
+
lora_alpha = 16
|
58 |
+
lora_dropout = 0.1
|
59 |
+
lora_r = 64
|
60 |
+
# Group sequences into batches with same length (saves memory and speeds up training considerably)
|
61 |
+
group_by_length = True
|
62 |
+
|
63 |
+
# Activate 4-bit precision base model loading
|
64 |
+
use_4bit = True
|
65 |
+
|
66 |
+
# Activate nested quantization for 4-bit base models
|
67 |
+
use_nested_quant = False
|
68 |
+
|
69 |
+
# Compute dtype for 4-bit base models
|
70 |
+
bnb_4bit_compute_dtype = "float16"
|
71 |
+
|
72 |
+
# Quantization type (fp4 or nf4=
|
73 |
+
bnb_4bit_quant_type = "nf4"
|
74 |
+
|
75 |
+
# Number of training epochs
|
76 |
+
num_train_epochs = 1
|
77 |
+
|
78 |
+
# Enable fp16 training
|
79 |
+
fp16 = True
|
80 |
+
|
81 |
+
# Enable bf16 training
|
82 |
+
bf16 = False
|
83 |
+
|
84 |
+
# Use packing dataset creating
|
85 |
+
packing = False
|
86 |
+
|
87 |
+
# Enable gradient checkpointing
|
88 |
+
gradient_checkpointing = True
|
89 |
+
|
90 |
+
# Optimizer to use, original is paged_adamw_32bit
|
91 |
+
optim = "paged_adamw_32bit"
|
92 |
+
|
93 |
+
# Fraction of steps to do a warmup for
|
94 |
+
warmup_ratio = 0.03
|
95 |
+
|
96 |
+
# Log every X updates steps
|
97 |
+
logging_steps = 1
|
98 |
+
|
99 |
+
# Load the entire model on the GPU 0
|
100 |
+
device_map = {"": 0}
|
101 |
+
|
102 |
+
# Visualize training
|
103 |
+
report_to = "tensorboard"
|
104 |
+
|
105 |
+
|
106 |
+
#2. Import du tokenizer.
|
107 |
+
peft_config = LoraConfig(
|
108 |
+
lora_alpha=lora_alpha,
|
109 |
+
lora_dropout=lora_dropout,
|
110 |
+
r=lora_r,
|
111 |
+
inference_mode=False,
|
112 |
+
task_type="CAUSAL_LM",
|
113 |
+
target_modules = ["q_proj", "v_proj"]
|
114 |
+
)
|
115 |
+
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
117 |
+
|
118 |
+
# This is the fix for fp16 training
|
119 |
+
#tokenizer.padding_side = "right"
|
120 |
+
#tokenizer.pad_token = tokenizer.eos_token
|
121 |
+
|
122 |
+
#3. Préparation de la base de données
|
123 |
+
|
124 |
+
from datasets import load_dataset
|
125 |
+
|
126 |
+
def format_alpaca(sample):
|
127 |
+
prompt = f"{sample['conversation']}"
|
128 |
+
return prompt
|
129 |
+
|
130 |
+
# template dataset to add prompt to each sample
|
131 |
+
def template_dataset(sample):
|
132 |
+
sample["text"] = f"{format_alpaca(sample)}{tokenizer.eos_token}"
|
133 |
+
return sample
|
134 |
+
|
135 |
+
# Chargement du dataset.
|
136 |
+
#dataset = load_dataset("databricks/databricks-dolly-15k", split="train")
|
137 |
+
data_files = {"train": "references_mfs_corpus.json"}
|
138 |
+
dataset = load_dataset("json", data_files=data_files, split="train")
|
139 |
+
|
140 |
+
# Shuffle the dataset
|
141 |
+
dataset_shuffled = dataset.shuffle(seed=42)
|
142 |
+
|
143 |
+
# Select the first 250 rows from the shuffled dataset, comment if you want 15k
|
144 |
+
#dataset = dataset_shuffled.select(range(512))
|
145 |
+
|
146 |
+
#Transformation du dataset pour utiliser le format guanaco
|
147 |
+
dataset = dataset.map(template_dataset, remove_columns=list(dataset.features))
|
148 |
+
|
149 |
+
print(dataset[40])
|
150 |
+
|
151 |
+
#4. Import du modèle
|
152 |
+
|
153 |
+
# Load tokenizer and model with QLoRA configuration
|
154 |
+
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
|
155 |
+
|
156 |
+
bnb_config = BitsAndBytesConfig(
|
157 |
+
load_in_4bit=use_4bit,
|
158 |
+
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
159 |
+
bnb_4bit_compute_dtype=compute_dtype,
|
160 |
+
bnb_4bit_use_double_quant=use_nested_quant,
|
161 |
+
)
|
162 |
+
|
163 |
+
if compute_dtype == torch.float16 and use_4bit:
|
164 |
+
major, _ = torch.cuda.get_device_capability()
|
165 |
+
if major >= 8:
|
166 |
+
print("=" * 80)
|
167 |
+
print("Your GPU supports bfloat16, you can accelerate training with the argument --bf16")
|
168 |
+
print("=" * 80)
|
169 |
+
|
170 |
+
model = AutoModelForCausalLM.from_pretrained(
|
171 |
+
model_name,
|
172 |
+
device_map=device_map,
|
173 |
+
quantization_config=bnb_config
|
174 |
+
)
|
175 |
+
|
176 |
+
model.config.use_cache = False
|
177 |
+
model.config.pretraining_tp = 1
|
178 |
+
|
179 |
+
#5. Fine-tuning
|
180 |
+
|
181 |
+
torch.cuda.empty_cache()
|
182 |
+
|
183 |
+
training_arguments = TrainingArguments(
|
184 |
+
output_dir=output_dir,
|
185 |
+
per_device_train_batch_size=per_device_train_batch_size,
|
186 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
187 |
+
gradient_checkpointing=True,
|
188 |
+
optim=optim,
|
189 |
+
save_steps=save_steps,
|
190 |
+
logging_steps=logging_steps,
|
191 |
+
learning_rate=learning_rate,
|
192 |
+
fp16=fp16,
|
193 |
+
bf16=bf16,
|
194 |
+
max_grad_norm=max_grad_norm,
|
195 |
+
max_steps=max_steps,
|
196 |
+
warmup_ratio=warmup_ratio,
|
197 |
+
group_by_length=group_by_length,
|
198 |
+
lr_scheduler_type=lr_scheduler_type,
|
199 |
+
report_to="tensorboard"
|
200 |
+
)
|
201 |
+
|
202 |
+
trainer = SFTTrainer(
|
203 |
+
model=model,
|
204 |
+
train_dataset=dataset,
|
205 |
+
peft_config=peft_config,
|
206 |
+
dataset_text_field="text",
|
207 |
+
max_seq_length=max_seq_length,
|
208 |
+
tokenizer=tokenizer,
|
209 |
+
args=training_arguments,
|
210 |
+
packing=packing
|
211 |
+
)
|
212 |
+
|
213 |
+
trainer.train()
|
214 |
+
#trainer.train(resume_from_checkpoint=True)
|
215 |
+
|
216 |
+
#6. Sauvegarde
|
217 |
+
|
218 |
+
model_to_save = trainer.model.module if hasattr(trainer.model, 'module') else trainer.model # Take care of distributed/parallel training
|
219 |
+
model_to_save.save_pretrained(new_model_name)
|
220 |
+
|
221 |
+
torch.cuda.empty_cache()
|
222 |
+
|
223 |
+
from peft import AutoPeftModelForCausalLM
|
224 |
+
|
225 |
+
model = AutoPeftModelForCausalLM.from_pretrained(new_model_name, device_map="auto", torch_dtype=torch.bfloat16)
|
226 |
+
model = model.merge_and_unload()
|
227 |
+
|
228 |
+
output_merged_dir = os.path.join(new_model_name, new_model_name)
|
229 |
+
model.save_pretrained(output_merged_dir, safe_serialization=True)
|
230 |
+
|
231 |
+
tokenizer.save_pretrained(output_merged_dir)
|