--- base_model: microsoft/codebert-base tags: - generated_from_trainer model-index: - name: CBertbase-APPS10k results: [] --- # CBertbase-APPS10k This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.4626 | 0.05 | 500 | 0.0390 | | 0.0215 | 0.1 | 1000 | 0.0065 | | 0.0096 | 0.15 | 1500 | 0.0018 | | 0.0022 | 0.2 | 2000 | 0.0009 | | 0.0023 | 0.25 | 2500 | 0.0003 | | 0.0011 | 0.3 | 3000 | 0.0004 | | 0.0011 | 0.35 | 3500 | 0.0002 | | 0.0016 | 0.4 | 4000 | 0.0002 | | 0.0006 | 0.45 | 4500 | 0.0001 | | 0.0004 | 0.5 | 5000 | 0.0001 | | 0.0002 | 0.55 | 5500 | 0.0001 | | 0.0002 | 0.6 | 6000 | 0.0001 | | 0.0003 | 0.65 | 6500 | 0.0001 | | 0.0001 | 0.7 | 7000 | 0.0001 | | 0.0001 | 0.75 | 7500 | 0.0001 | | 0.0001 | 0.8 | 8000 | 0.0001 | | 0.0001 | 0.85 | 8500 | 0.0001 | | 0.0001 | 0.9 | 9000 | 0.0001 | | 0.0001 | 0.95 | 9500 | 0.0001 | | 0.0001 | 1.0 | 10000 | 0.0001 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2