File size: 1,635 Bytes
fc2848f
 
 
4c61a9c
fc2848f
 
 
 
4c61a9c
fc2848f
4c61a9c
fc2848f
4c61a9c
fc2848f
 
 
4c61a9c
fc2848f
 
4c61a9c
fc2848f
4c61a9c
fc2848f
 
 
 
4c61a9c
fc2848f
 
4c61a9c
fc2848f
 
4c61a9c
 
fc2848f
 
 
 
4c61a9c
 
 
fc2848f
 
 
4c61a9c
fc2848f
 
 
4c61a9c
fc2848f
 
 
 
 
 
4c61a9c
 
fc2848f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
tags:
- adapter-transformers
- xlm-roberta
datasets:
- UKPLab/m2qa
---

# Adapter `AdapterHub/m2qa-xlm-roberta-base-mad-x-domain-product-reviews` for xlm-roberta-base

An [adapter](https://adapterhub.ml) for the `xlm-roberta-base` model that was trained on the [UKPLab/m2qa](https://huggingface.co/datasets/UKPLab/m2qa/) dataset.

This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.

## Usage

First, install `adapter-transformers`:

```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_

Now, the adapter can be loaded and activated like this:

```python
from transformers import AutoAdapterModel

model = AutoAdapterModel.from_pretrained("xlm-roberta-base")
adapter_name = model.load_adapter("AdapterHub/m2qa-xlm-roberta-base-mad-x-domain-product-reviews", source="hf", set_active=True)
```

## Architecture & Training


See our repository for more information: See https://github.com/UKPLab/m2qa/tree/main/Experiments/mad-x-domain


## Evaluation results

<!-- Add some description here -->

## Citation


```
@article{englaender-etal-2024-m2qa,
    title="M2QA: Multi-domain Multilingual Question Answering",
    author={Engl{\"a}nder, Leon and
        Sterz, Hannah and
        Poth, Clifton and
        Pfeiffer, Jonas and
        Kuznetsov, Ilia and
        Gurevych, Iryna},
    journal={arXiv preprint},
    url="https://arxiv.org/abs/2407.01091",
    month = jul,
    year="2024"
}
```