Abhi03 commited on
Commit
19f3f80
1 Parent(s): 274a09c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 206.02 +/- 72.93
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbab7dd8790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbab7dd8820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbab7dd88b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbab7dd8940>", "_build": "<function ActorCriticPolicy._build at 0x7fbab7dd89d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbab7dd8a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbab7dd8af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbab7dd8b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbab7dd8c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbab7dd8ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbab7dd8d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbab7dd4840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672079589104615116, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaeVTzDJW26feoDPOw3wTfUIwK7OhdUNgAAgD8AAIA/s6/HvfYsK7p15le72hXXtWc3NbozQXo6AACAPwAAgD+mlIu9FNikutlSjTtPCaI3QSEOugW0CLYAAIA/AACAPxq3pD3S7qI8UCZrPfVMML7sqsU8xsCgPAAAAAAAAAAAzZ8hPfYYZrrDOAK8KXWjNQpV9LrjhRS1AACAPwAAgD8AQJy6XGtPun0NGroTzZK2tMnXOvZ+NDkAAIA/AACAP03PPz0UJKS62gjMuz5h3zYqK2w5pEY2tgAAgD8AAIA/7S9YvnSUJT/Zuzo+coUEvuORijyV3X88AAAAAAAAAADNYWu9YLWwPzpzn75T9WG+iIqqvRiJeL0AAAAAAAAAADN35TuPIlq62XGwOumMqDaHOiA78NLLuQAAgD8AAIA/ADfVPXlrnj/63ac+Tgkzvi1Xwj16WAE+AAAAAAAAAAAAb5s+8S43P21J373zYDu+VQGEPXpuubsAAAAAAAAAADMlPj6PQn458U4AvKd6e7iHTCI89SFWuQAAgD8AAIA/Sqqevjc+Tz+2DyI+wq0/vvQPBr3NvfC8AAAAAAAAAADAxUC+9k5EO0iLYrnwUYQ2yCPkvEwchzgAAIA/AACAP7MGTT0pmHi6t0kru6udgDUSgT27YF1HOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIV87eGe1UZkCUhpRSlIwBbJRN6AOMAXSUR0CR1T1tfoicdX2UKGgGaAloD0MICvMeZ5qSTkCUhpRSlGgVTSgBaBZHQJHXqHgxagV1fZQoaAZoCWgPQwijycUY2I9lQJSGlFKUaBVN6ANoFkdAkdfpBomG/XV9lChoBmgJaA9DCKTDQxg/6ltAlIaUUpRoFU3oA2gWR0CR4GsPJ7swdX2UKGgGaAloD0MIgPRNmgZzRUCUhpRSlGgVTQ0BaBZHQJHgnN+so2J1fZQoaAZoCWgPQwi/8iA9RT4rQJSGlFKUaBVL7mgWR0CR4nCJoCdSdX2UKGgGaAloD0MIA9AoXXrBYkCUhpRSlGgVTegDaBZHQJHlVvvSc9Z1fZQoaAZoCWgPQwjJ5qp5jgNlQJSGlFKUaBVN6ANoFkdAkeZwKBun/HV9lChoBmgJaA9DCOZ4BaKna2NAlIaUUpRoFU3oA2gWR0CR6Hu3+dbxdX2UKGgGaAloD0MI9Wc/UkSjYECUhpRSlGgVTegDaBZHQJHvEz544ZN1fZQoaAZoCWgPQwiAnDBhtJVmQJSGlFKUaBVN6ANoFkdAkfid0FKTS3V9lChoBmgJaA9DCLe3W5IDjmRAlIaUUpRoFU3oA2gWR0CSEtTj/+85dX2UKGgGaAloD0MI3Siy1tBcYUCUhpRSlGgVTegDaBZHQJIT+rsByS51fZQoaAZoCWgPQwgLfEW33rphQJSGlFKUaBVN6ANoFkdAkhSm7Bfrr3V9lChoBmgJaA9DCNNKIZBLn2BAlIaUUpRoFU3oA2gWR0CSG+WQOnVHdX2UKGgGaAloD0MIQgjIl9BwY0CUhpRSlGgVTegDaBZHQJIe1CCz1K51fZQoaAZoCWgPQwjdmJ6wxBFeQJSGlFKUaBVN6ANoFkdAkiHI0qH45HV9lChoBmgJaA9DCFUvv9Nk2WVAlIaUUpRoFU3oA2gWR0CSKQPZqVQidX2UKGgGaAloD0MIVP61vPIIZ0CUhpRSlGgVTegDaBZHQJIpX2mHgxd1fZQoaAZoCWgPQwgZjBGJQslhQJSGlFKUaBVN6ANoFkdAkjR4WLxZuHV9lChoBmgJaA9DCHBbW3hePmBAlIaUUpRoFU3oA2gWR0CSNLDOC5EudX2UKGgGaAloD0MIBtUGJ6IbXkCUhpRSlGgVTegDaBZHQJI3MkcCHRF1fZQoaAZoCWgPQwjsh9hgYYdhQJSGlFKUaBVN6ANoFkdAkjrGcvugH3V9lChoBmgJaA9DCFk1CHO7vGJAlIaUUpRoFU3oA2gWR0CSPCObRWtEdX2UKGgGaAloD0MIPnsuUxNAY0CUhpRSlGgVTegDaBZHQJI+4C5mRNh1fZQoaAZoCWgPQwjyIhPwazZXQJSGlFKUaBVN6ANoFkdAkkb7N4Z/C3V9lChoBmgJaA9DCEEPtW0YB0NAlIaUUpRoFU0XAWgWR0CSTm4TK1XvdX2UKGgGaAloD0MILlVpi+s+b0CUhpRSlGgVTXgBaBZHQJJR5gYxcml1fZQoaAZoCWgPQwjueJPfokJdQJSGlFKUaBVN6ANoFkdAklH5sTFl1HV9lChoBmgJaA9DCPnYXaCk/WNAlIaUUpRoFU3oA2gWR0CSbG/zJ6ppdX2UKGgGaAloD0MI9E4F3PNZY0CUhpRSlGgVTegDaBZHQJJtnbUPQOZ1fZQoaAZoCWgPQwhi2cwhKQNiQJSGlFKUaBVN6ANoFkdAkm5QY+B6KXV9lChoBmgJaA9DCEVoBBtX32RAlIaUUpRoFU3oA2gWR0CSdWnzg/C7dX2UKGgGaAloD0MIbywoDMqWQ0CUhpRSlGgVTSIBaBZHQJJ1zwvxpcp1fZQoaAZoCWgPQwiYwK27eVNcQJSGlFKUaBVN6ANoFkdAknhZSiudPXV9lChoBmgJaA9DCBwnhXmPGmFAlIaUUpRoFU3oA2gWR0CSezUX531SdX2UKGgGaAloD0MIp5TXSuguDECUhpRSlGgVTTYBaBZHQJKBJv2oNut1fZQoaAZoCWgPQwiM9KJ2v+9hQJSGlFKUaBVN6ANoFkdAkoH/kzXSSnV9lChoBmgJaA9DCDDxR1Hn4mFAlIaUUpRoFU3oA2gWR0CSglIRywOfdX2UKGgGaAloD0MIdsJLcOp7R8CUhpRSlGgVTUoBaBZHQJKKWpcX3xp1fZQoaAZoCWgPQwhW0/VE16pnQJSGlFKUaBVN6ANoFkdAkot55AyEc3V9lChoBmgJaA9DCEzGMZK9k2RAlIaUUpRoFU3oA2gWR0CSi6oCdSVGdX2UKGgGaAloD0MI56ij42osRUCUhpRSlGgVTS8BaBZHQJKN5s3yZrp1fZQoaAZoCWgPQwhYA5SGGhdgQJSGlFKUaBVN6ANoFkdAkpHV+NLlFXV9lChoBmgJaA9DCIC4q1eRSmJAlIaUUpRoFU3oA2gWR0CSlDVwxWT5dX2UKGgGaAloD0MIjBL0F3rsXkCUhpRSlGgVTegDaBZHQJKcbyc0+C91fZQoaAZoCWgPQwgYlGk0udQwQJSGlFKUaBVNJwFoFkdAkqcziKiwjnV9lChoBmgJaA9DCMWp1sKsnmJAlIaUUpRoFU3oA2gWR0CSqAWOZLIxdX2UKGgGaAloD0MIfevDeqN9XkCUhpRSlGgVTegDaBZHQJKoH5GjKxN1fZQoaAZoCWgPQwi7Y7FNKqtdQJSGlFKUaBVN6ANoFkdAksQwnc+JQHV9lChoBmgJaA9DCIW1MXZCq2NAlIaUUpRoFU3oA2gWR0CSxOlJpWWAdX2UKGgGaAloD0MIIJbNHBJaY0CUhpRSlGgVTegDaBZHQJLMsskIHC51fZQoaAZoCWgPQwiCrKdW359jQJSGlFKUaBVN6ANoFkdAks9NzS1E3XV9lChoBmgJaA9DCJ7Swfq/0GVAlIaUUpRoFU3oA2gWR0CS2PTRIBikdX2UKGgGaAloD0MIHAk02NSpXUCUhpRSlGgVTegDaBZHQJLZ9Fd9lVd1fZQoaAZoCWgPQwj99+C1S8FgQJSGlFKUaBVN6ANoFkdAktpVObiIcnV9lChoBmgJaA9DCBBYObRIWmdAlIaUUpRoFU3oA2gWR0CS42OLzf78dX2UKGgGaAloD0MIhlRRvMrcQECUhpRSlGgVTSwBaBZHQJLkVOBUaQ51fZQoaAZoCWgPQwiDNGPR9HBjQJSGlFKUaBVN6ANoFkdAkuScjNY8uHV9lChoBmgJaA9DCP0v16KFImNAlIaUUpRoFU3oA2gWR0CS5Mw4bS7YdX2UKGgGaAloD0MIkBMmjGZcXkCUhpRSlGgVTegDaBZHQJLnOxkd3jd1fZQoaAZoCWgPQwhhqS7g5UFjQJSGlFKUaBVN6ANoFkdAku2g2MsH0XV9lChoBmgJaA9DCESi0LLueWJAlIaUUpRoFU3oA2gWR0CS9cKfnOjZdX2UKGgGaAloD0MI7pi6K7ttZECUhpRSlGgVTegDaBZHQJMAXhybQTp1fZQoaAZoCWgPQwgjTbwDPK5bQJSGlFKUaBVN6ANoFkdAkwEaXrt3OnV9lChoBmgJaA9DCGCuRQtQZWFAlIaUUpRoFU3oA2gWR0CTATBZpztDdX2UKGgGaAloD0MIQnbexmbnZUCUhpRSlGgVTegDaBZHQJMdLiqABkt1fZQoaAZoCWgPQwg/qIsUSqZiQJSGlFKUaBVN6ANoFkdAkx3qQ3gk1XV9lChoBmgJaA9DCCKnr+frbGBAlIaUUpRoFU3oA2gWR0CTJY6Ae7tidX2UKGgGaAloD0MIKV36lyTCYkCUhpRSlGgVTegDaBZHQJMyxBIFvAJ1fZQoaAZoCWgPQwjKMy+HXaNiQJSGlFKUaBVN6ANoFkdAkzPMNc4YJnV9lChoBmgJaA9DCMakv5fCYWJAlIaUUpRoFU3oA2gWR0CTNDSK3uuzdX2UKGgGaAloD0MI75BigMTpY0CUhpRSlGgVTegDaBZHQJM+F8CxNZh1fZQoaAZoCWgPQwjs+ZrlMkdjQJSGlFKUaBVN6ANoFkdAkz8jKHO8kHV9lChoBmgJaA9DCHZSX5Z22GBAlIaUUpRoFU3oA2gWR0CTP279Q40edX2UKGgGaAloD0MIizidZKvuWUCUhpRSlGgVTegDaBZHQJM/oouwost1fZQoaAZoCWgPQwiaP6a1afZkQJSGlFKUaBVN6ANoFkdAk0IDWTX8O3V9lChoBmgJaA9DCMEBLV3BbGJAlIaUUpRoFU3oA2gWR0CTSF24NI9UdX2UKGgGaAloD0MIknajj/lBX0CUhpRSlGgVTegDaBZHQJNRATwlSjx1fZQoaAZoCWgPQwiE1sOXiYJjQJSGlFKUaBVN6ANoFkdAk1uKziS7oXV9lChoBmgJaA9DCMpqup5ooGRAlIaUUpRoFU3oA2gWR0CTXEK0UoKEdX2UKGgGaAloD0MIoyJOJ9mXY0CUhpRSlGgVTegDaBZHQJNcV2B8QZp1fZQoaAZoCWgPQwinXUwzXZhlQJSGlFKUaBVN6ANoFkdAk2S8p1A7gnV9lChoBmgJaA9DCHQkl/8QfmJAlIaUUpRoFU3oA2gWR0CTeG6uGKyfdX2UKGgGaAloD0MIOLpKd9fdZECUhpRSlGgVTegDaBZHQJOAAdOqNqB1fZQoaAZoCWgPQwiADB07KBVhQJSGlFKUaBVN6ANoFkdAk4xu40/GEXV9lChoBmgJaA9DCKEUrdyLf2BAlIaUUpRoFU3oA2gWR0CTjWglF+d9dX2UKGgGaAloD0MIz0vFxrxhX0CUhpRSlGgVTegDaBZHQJONyN5t3wF1fZQoaAZoCWgPQwgychb2NCtmQJSGlFKUaBVN6ANoFkdAk5czxb0OE3V9lChoBmgJaA9DCLzrbMg/vmBAlIaUUpRoFU3oA2gWR0CTmDpjMFEBdX2UKGgGaAloD0MIh4px/ibqYECUhpRSlGgVTegDaBZHQJOYiS/0ulJ1fZQoaAZoCWgPQwgq4nSSrUNiQJSGlFKUaBVN6ANoFkdAk5i27OE/S3V9lChoBmgJaA9DCFevIqMDG2ZAlIaUUpRoFU3oA2gWR0CTmy34sVcmdX2UKGgGaAloD0MIrb8lAP82X0CUhpRSlGgVTegDaBZHQJOj+eTV2A51fZQoaAZoCWgPQwh0B7EzBUNlQJSGlFKUaBVN6ANoFkdAk68GGdqcmXV9lChoBmgJaA9DCNP2r6y0VWJAlIaUUpRoFU3oA2gWR0CTuOtbcGkfdX2UKGgGaAloD0MIuYswRbmnX0CUhpRSlGgVTegDaBZHQJO5kG+sYEZ1fZQoaAZoCWgPQwgKhnMNM91jQJSGlFKUaBVN6ANoFkdAk7mkRSP2f3V9lChoBmgJaA9DCMIzoUli4WFAlIaUUpRoFU3oA2gWR0CTwYjc2zfKdX2UKGgGaAloD0MIf8ADAwjQWkCUhpRSlGgVTegDaBZHQJPCK0PYnOV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_md.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45fc66feda0c1b6045487ad0ac903614ebf2df16d3d658a90b985dc6cc03a9c4
3
+ size 147218
lunar_md/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
lunar_md/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbab7dd8790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbab7dd8820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbab7dd88b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbab7dd8940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbab7dd89d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbab7dd8a60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbab7dd8af0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbab7dd8b80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbab7dd8c10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbab7dd8ca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbab7dd8d30>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fbab7dd4840>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672079589104615116,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaeVTzDJW26feoDPOw3wTfUIwK7OhdUNgAAgD8AAIA/s6/HvfYsK7p15le72hXXtWc3NbozQXo6AACAPwAAgD+mlIu9FNikutlSjTtPCaI3QSEOugW0CLYAAIA/AACAPxq3pD3S7qI8UCZrPfVMML7sqsU8xsCgPAAAAAAAAAAAzZ8hPfYYZrrDOAK8KXWjNQpV9LrjhRS1AACAPwAAgD8AQJy6XGtPun0NGroTzZK2tMnXOvZ+NDkAAIA/AACAP03PPz0UJKS62gjMuz5h3zYqK2w5pEY2tgAAgD8AAIA/7S9YvnSUJT/Zuzo+coUEvuORijyV3X88AAAAAAAAAADNYWu9YLWwPzpzn75T9WG+iIqqvRiJeL0AAAAAAAAAADN35TuPIlq62XGwOumMqDaHOiA78NLLuQAAgD8AAIA/ADfVPXlrnj/63ac+Tgkzvi1Xwj16WAE+AAAAAAAAAAAAb5s+8S43P21J373zYDu+VQGEPXpuubsAAAAAAAAAADMlPj6PQn458U4AvKd6e7iHTCI89SFWuQAAgD8AAIA/Sqqevjc+Tz+2DyI+wq0/vvQPBr3NvfC8AAAAAAAAAADAxUC+9k5EO0iLYrnwUYQ2yCPkvEwchzgAAIA/AACAP7MGTT0pmHi6t0kru6udgDUSgT27YF1HOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIV87eGe1UZkCUhpRSlIwBbJRN6AOMAXSUR0CR1T1tfoicdX2UKGgGaAloD0MICvMeZ5qSTkCUhpRSlGgVTSgBaBZHQJHXqHgxagV1fZQoaAZoCWgPQwijycUY2I9lQJSGlFKUaBVN6ANoFkdAkdfpBomG/XV9lChoBmgJaA9DCKTDQxg/6ltAlIaUUpRoFU3oA2gWR0CR4GsPJ7swdX2UKGgGaAloD0MIgPRNmgZzRUCUhpRSlGgVTQ0BaBZHQJHgnN+so2J1fZQoaAZoCWgPQwi/8iA9RT4rQJSGlFKUaBVL7mgWR0CR4nCJoCdSdX2UKGgGaAloD0MIA9AoXXrBYkCUhpRSlGgVTegDaBZHQJHlVvvSc9Z1fZQoaAZoCWgPQwjJ5qp5jgNlQJSGlFKUaBVN6ANoFkdAkeZwKBun/HV9lChoBmgJaA9DCOZ4BaKna2NAlIaUUpRoFU3oA2gWR0CR6Hu3+dbxdX2UKGgGaAloD0MI9Wc/UkSjYECUhpRSlGgVTegDaBZHQJHvEz544ZN1fZQoaAZoCWgPQwiAnDBhtJVmQJSGlFKUaBVN6ANoFkdAkfid0FKTS3V9lChoBmgJaA9DCLe3W5IDjmRAlIaUUpRoFU3oA2gWR0CSEtTj/+85dX2UKGgGaAloD0MI3Siy1tBcYUCUhpRSlGgVTegDaBZHQJIT+rsByS51fZQoaAZoCWgPQwgLfEW33rphQJSGlFKUaBVN6ANoFkdAkhSm7Bfrr3V9lChoBmgJaA9DCNNKIZBLn2BAlIaUUpRoFU3oA2gWR0CSG+WQOnVHdX2UKGgGaAloD0MIQgjIl9BwY0CUhpRSlGgVTegDaBZHQJIe1CCz1K51fZQoaAZoCWgPQwjdmJ6wxBFeQJSGlFKUaBVN6ANoFkdAkiHI0qH45HV9lChoBmgJaA9DCFUvv9Nk2WVAlIaUUpRoFU3oA2gWR0CSKQPZqVQidX2UKGgGaAloD0MIVP61vPIIZ0CUhpRSlGgVTegDaBZHQJIpX2mHgxd1fZQoaAZoCWgPQwgZjBGJQslhQJSGlFKUaBVN6ANoFkdAkjR4WLxZuHV9lChoBmgJaA9DCHBbW3hePmBAlIaUUpRoFU3oA2gWR0CSNLDOC5EudX2UKGgGaAloD0MIBtUGJ6IbXkCUhpRSlGgVTegDaBZHQJI3MkcCHRF1fZQoaAZoCWgPQwjsh9hgYYdhQJSGlFKUaBVN6ANoFkdAkjrGcvugH3V9lChoBmgJaA9DCFk1CHO7vGJAlIaUUpRoFU3oA2gWR0CSPCObRWtEdX2UKGgGaAloD0MIPnsuUxNAY0CUhpRSlGgVTegDaBZHQJI+4C5mRNh1fZQoaAZoCWgPQwjyIhPwazZXQJSGlFKUaBVN6ANoFkdAkkb7N4Z/C3V9lChoBmgJaA9DCEEPtW0YB0NAlIaUUpRoFU0XAWgWR0CSTm4TK1XvdX2UKGgGaAloD0MILlVpi+s+b0CUhpRSlGgVTXgBaBZHQJJR5gYxcml1fZQoaAZoCWgPQwjueJPfokJdQJSGlFKUaBVN6ANoFkdAklH5sTFl1HV9lChoBmgJaA9DCPnYXaCk/WNAlIaUUpRoFU3oA2gWR0CSbG/zJ6ppdX2UKGgGaAloD0MI9E4F3PNZY0CUhpRSlGgVTegDaBZHQJJtnbUPQOZ1fZQoaAZoCWgPQwhi2cwhKQNiQJSGlFKUaBVN6ANoFkdAkm5QY+B6KXV9lChoBmgJaA9DCEVoBBtX32RAlIaUUpRoFU3oA2gWR0CSdWnzg/C7dX2UKGgGaAloD0MIbywoDMqWQ0CUhpRSlGgVTSIBaBZHQJJ1zwvxpcp1fZQoaAZoCWgPQwiYwK27eVNcQJSGlFKUaBVN6ANoFkdAknhZSiudPXV9lChoBmgJaA9DCBwnhXmPGmFAlIaUUpRoFU3oA2gWR0CSezUX531SdX2UKGgGaAloD0MIp5TXSuguDECUhpRSlGgVTTYBaBZHQJKBJv2oNut1fZQoaAZoCWgPQwiM9KJ2v+9hQJSGlFKUaBVN6ANoFkdAkoH/kzXSSnV9lChoBmgJaA9DCDDxR1Hn4mFAlIaUUpRoFU3oA2gWR0CSglIRywOfdX2UKGgGaAloD0MIdsJLcOp7R8CUhpRSlGgVTUoBaBZHQJKKWpcX3xp1fZQoaAZoCWgPQwhW0/VE16pnQJSGlFKUaBVN6ANoFkdAkot55AyEc3V9lChoBmgJaA9DCEzGMZK9k2RAlIaUUpRoFU3oA2gWR0CSi6oCdSVGdX2UKGgGaAloD0MI56ij42osRUCUhpRSlGgVTS8BaBZHQJKN5s3yZrp1fZQoaAZoCWgPQwhYA5SGGhdgQJSGlFKUaBVN6ANoFkdAkpHV+NLlFXV9lChoBmgJaA9DCIC4q1eRSmJAlIaUUpRoFU3oA2gWR0CSlDVwxWT5dX2UKGgGaAloD0MIjBL0F3rsXkCUhpRSlGgVTegDaBZHQJKcbyc0+C91fZQoaAZoCWgPQwgYlGk0udQwQJSGlFKUaBVNJwFoFkdAkqcziKiwjnV9lChoBmgJaA9DCMWp1sKsnmJAlIaUUpRoFU3oA2gWR0CSqAWOZLIxdX2UKGgGaAloD0MIfevDeqN9XkCUhpRSlGgVTegDaBZHQJKoH5GjKxN1fZQoaAZoCWgPQwi7Y7FNKqtdQJSGlFKUaBVN6ANoFkdAksQwnc+JQHV9lChoBmgJaA9DCIW1MXZCq2NAlIaUUpRoFU3oA2gWR0CSxOlJpWWAdX2UKGgGaAloD0MIIJbNHBJaY0CUhpRSlGgVTegDaBZHQJLMsskIHC51fZQoaAZoCWgPQwiCrKdW359jQJSGlFKUaBVN6ANoFkdAks9NzS1E3XV9lChoBmgJaA9DCJ7Swfq/0GVAlIaUUpRoFU3oA2gWR0CS2PTRIBikdX2UKGgGaAloD0MIHAk02NSpXUCUhpRSlGgVTegDaBZHQJLZ9Fd9lVd1fZQoaAZoCWgPQwj99+C1S8FgQJSGlFKUaBVN6ANoFkdAktpVObiIcnV9lChoBmgJaA9DCBBYObRIWmdAlIaUUpRoFU3oA2gWR0CS42OLzf78dX2UKGgGaAloD0MIhlRRvMrcQECUhpRSlGgVTSwBaBZHQJLkVOBUaQ51fZQoaAZoCWgPQwiDNGPR9HBjQJSGlFKUaBVN6ANoFkdAkuScjNY8uHV9lChoBmgJaA9DCP0v16KFImNAlIaUUpRoFU3oA2gWR0CS5Mw4bS7YdX2UKGgGaAloD0MIkBMmjGZcXkCUhpRSlGgVTegDaBZHQJLnOxkd3jd1fZQoaAZoCWgPQwhhqS7g5UFjQJSGlFKUaBVN6ANoFkdAku2g2MsH0XV9lChoBmgJaA9DCESi0LLueWJAlIaUUpRoFU3oA2gWR0CS9cKfnOjZdX2UKGgGaAloD0MI7pi6K7ttZECUhpRSlGgVTegDaBZHQJMAXhybQTp1fZQoaAZoCWgPQwgjTbwDPK5bQJSGlFKUaBVN6ANoFkdAkwEaXrt3OnV9lChoBmgJaA9DCGCuRQtQZWFAlIaUUpRoFU3oA2gWR0CTATBZpztDdX2UKGgGaAloD0MIQnbexmbnZUCUhpRSlGgVTegDaBZHQJMdLiqABkt1fZQoaAZoCWgPQwg/qIsUSqZiQJSGlFKUaBVN6ANoFkdAkx3qQ3gk1XV9lChoBmgJaA9DCCKnr+frbGBAlIaUUpRoFU3oA2gWR0CTJY6Ae7tidX2UKGgGaAloD0MIKV36lyTCYkCUhpRSlGgVTegDaBZHQJMyxBIFvAJ1fZQoaAZoCWgPQwjKMy+HXaNiQJSGlFKUaBVN6ANoFkdAkzPMNc4YJnV9lChoBmgJaA9DCMakv5fCYWJAlIaUUpRoFU3oA2gWR0CTNDSK3uuzdX2UKGgGaAloD0MI75BigMTpY0CUhpRSlGgVTegDaBZHQJM+F8CxNZh1fZQoaAZoCWgPQwjs+ZrlMkdjQJSGlFKUaBVN6ANoFkdAkz8jKHO8kHV9lChoBmgJaA9DCHZSX5Z22GBAlIaUUpRoFU3oA2gWR0CTP279Q40edX2UKGgGaAloD0MIizidZKvuWUCUhpRSlGgVTegDaBZHQJM/oouwost1fZQoaAZoCWgPQwiaP6a1afZkQJSGlFKUaBVN6ANoFkdAk0IDWTX8O3V9lChoBmgJaA9DCMEBLV3BbGJAlIaUUpRoFU3oA2gWR0CTSF24NI9UdX2UKGgGaAloD0MIknajj/lBX0CUhpRSlGgVTegDaBZHQJNRATwlSjx1fZQoaAZoCWgPQwiE1sOXiYJjQJSGlFKUaBVN6ANoFkdAk1uKziS7oXV9lChoBmgJaA9DCMpqup5ooGRAlIaUUpRoFU3oA2gWR0CTXEK0UoKEdX2UKGgGaAloD0MIoyJOJ9mXY0CUhpRSlGgVTegDaBZHQJNcV2B8QZp1fZQoaAZoCWgPQwinXUwzXZhlQJSGlFKUaBVN6ANoFkdAk2S8p1A7gnV9lChoBmgJaA9DCHQkl/8QfmJAlIaUUpRoFU3oA2gWR0CTeG6uGKyfdX2UKGgGaAloD0MIOLpKd9fdZECUhpRSlGgVTegDaBZHQJOAAdOqNqB1fZQoaAZoCWgPQwiADB07KBVhQJSGlFKUaBVN6ANoFkdAk4xu40/GEXV9lChoBmgJaA9DCKEUrdyLf2BAlIaUUpRoFU3oA2gWR0CTjWglF+d9dX2UKGgGaAloD0MIz0vFxrxhX0CUhpRSlGgVTegDaBZHQJONyN5t3wF1fZQoaAZoCWgPQwgychb2NCtmQJSGlFKUaBVN6ANoFkdAk5czxb0OE3V9lChoBmgJaA9DCLzrbMg/vmBAlIaUUpRoFU3oA2gWR0CTmDpjMFEBdX2UKGgGaAloD0MIh4px/ibqYECUhpRSlGgVTegDaBZHQJOYiS/0ulJ1fZQoaAZoCWgPQwgq4nSSrUNiQJSGlFKUaBVN6ANoFkdAk5i27OE/S3V9lChoBmgJaA9DCFevIqMDG2ZAlIaUUpRoFU3oA2gWR0CTmy34sVcmdX2UKGgGaAloD0MIrb8lAP82X0CUhpRSlGgVTegDaBZHQJOj+eTV2A51fZQoaAZoCWgPQwh0B7EzBUNlQJSGlFKUaBVN6ANoFkdAk68GGdqcmXV9lChoBmgJaA9DCNP2r6y0VWJAlIaUUpRoFU3oA2gWR0CTuOtbcGkfdX2UKGgGaAloD0MIuYswRbmnX0CUhpRSlGgVTegDaBZHQJO5kG+sYEZ1fZQoaAZoCWgPQwgKhnMNM91jQJSGlFKUaBVN6ANoFkdAk7mkRSP2f3V9lChoBmgJaA9DCMIzoUli4WFAlIaUUpRoFU3oA2gWR0CTwYjc2zfKdX2UKGgGaAloD0MIf8ADAwjQWkCUhpRSlGgVTegDaBZHQJPCK0PYnOV1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
lunar_md/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1fe91f3736445db3b0ead6b78ba8c450b551120bc436f8043a609cf69d9fe2b
3
+ size 87929
lunar_md/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1098db0948dd716430a26ee7dea1d6fe1d24a834c162f3aaf49d87365f4a3cc6
3
+ size 43201
lunar_md/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_md/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (218 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 206.0207802914505, "std_reward": 72.92646099489588, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-26T19:22:30.526698"}