--- license: apache-2.0 --- ```python from PIL import Image from transformers import AutoImageProcessor, AutoModelForImageClassification import torch from rich import print image_path = "./OIP.jpeg" image = Image.open(image_path) model_name = "Abhaykoul/emo-face-rec" processor = AutoImageProcessor.from_pretrained(model_name) model = AutoModelForImageClassification.from_pretrained(model_name) inputs = processor(images=image, return_tensors="pt") # Make a prediction with torch.no_grad(): outputs = model(**inputs) predicted_class_id = outputs.logits.argmax(-1).item() predicted_emotion = model.config.id2label[predicted_class_id] confidence_scores = torch.nn.functional.softmax(outputs.logits, dim=-1) scores = {model.config.id2label[i]: score.item() for i, score in enumerate(confidence_scores[0])} # Print the results print(f"Predicted emotion: {predicted_emotion}") print("\nConfidence scores for all emotions:") for emotion, score in scores.items(): print(f"{emotion}: {score:.4f}") ```