ALM-AHME commited on
Commit
b34befa
1 Parent(s): 1b6bb50

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-LungCancer-LC25000-AH-40-30-30-S
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: Augmented-Final
20
+ split: train
21
+ args: Augmented-Final
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9931339977851605
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-LungCancer-LC25000-AH-40-30-30-S
32
+
33
+ This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.0217
36
+ - Accuracy: 0.9931
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0005
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 32
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.5
64
+ - num_epochs: 7
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.176 | 1.0 | 187 | 0.0891 | 0.9663 |
71
+ | 0.2574 | 2.0 | 374 | 0.2127 | 0.9249 |
72
+ | 0.2416 | 3.0 | 561 | 0.2407 | 0.9236 |
73
+ | 0.2457 | 4.0 | 749 | 0.1245 | 0.9632 |
74
+ | 0.3583 | 5.0 | 936 | 0.1709 | 0.9404 |
75
+ | 0.149 | 6.0 | 1123 | 0.0502 | 0.9814 |
76
+ | 0.061 | 6.99 | 1309 | 0.0217 | 0.9931 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.31.0
82
+ - Pytorch 2.0.1+cu118
83
+ - Datasets 2.13.1
84
+ - Tokenizers 0.13.3