--- tags: - dna - human_genome --- # GENA-LM (gena-lm-bigbird-base-t2t) GENA-LM is a Family of Open-Source Foundational Models for Long DNA Sequences. GENA-LM models are transformer masked language models trained on human DNA sequence. `gena-lm-bigbird-base-t2t` follows the BigBird architecture and its HuggingFace implementation. Differences between GENA-LM (`gena-lm-bigbird-base-t2t`) and DNABERT: - BPE tokenization instead of k-mers; - input sequence size is about 36000 nucleotides (4096 BPE tokens) compared to 512 nucleotides of DNABERT; - pre-training on T2T vs. GRCh38.p13 human genome assembly. Source code and data: https://github.com/AIRI-Institute/GENA_LM Paper: https://www.biorxiv.org/content/10.1101/2023.06.12.544594 This repository also contains models that are finetuned on downstream tasks and models that are used in our [GENA-Web](https://dnalm.airi.net) web tool for genomic sequence annotation: - splice sites prediction (branch [gena_web_spliceai](https://huggingface.co/AIRI-Institute/gena-lm-bigbird-base-t2t/tree/gena_web_spliceai)) ## Examples ### Load pre-trained model ```python from transformers import AutoTokenizer, BigBirdForMaskedLM tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-t2t') model = BigBirdForMaskedLM.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-t2t') ``` ### How to load the model to fine-tune it on classification task ```python from transformers import AutoTokenizer, BigBirdForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-t2t') model = BigBirdForSequenceClassification.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-t2t') ``` ## Model description GENA-LM (`gena-lm-bigbird-base-t2t`) model is trained in a masked language model (MLM) fashion, following the methods proposed in the BigBird paper by masking 15% of tokens. Model config for `gena-lm-bigbird-base-t2t` is similar to the `google/bigbird-roberta-base`: - 4096 Maximum sequence length - 12 Layers, 12 Attention heads - 768 Hidden size - sparse config: - block size: 64 - random blocks: 3 - global blocks: 2 - sliding window blocks: 3 - 32k Vocabulary size, tokenizer trained on DNA data. We pre-trained `gena-lm-bigbird-base-t2t` using the latest T2T human genome assembly (https://www.ncbi.nlm.nih.gov/assembly/GCA_009914755.3/). The data was augmented by sampling mutations from 1000-genome SNPs (gnomAD dataset). Pre-training was performed for 1,070,000 iterations with batch size 256. ## Evaluation For evaluation results, see our paper: https://www.biorxiv.org/content/10.1101/2023.06.12.544594v1 ## Citation ```bibtex @article{GENA_LM, author = {Veniamin Fishman and Yuri Kuratov and Maxim Petrov and Aleksei Shmelev and Denis Shepelin and Nikolay Chekanov and Olga Kardymon and Mikhail Burtsev}, title = {GENA-LM: A Family of Open-Source Foundational Models for Long DNA Sequences}, elocation-id = {2023.06.12.544594}, year = {2023}, doi = {10.1101/2023.06.12.544594}, publisher = {Cold Spring Harbor Laboratory}, URL = {https://www.biorxiv.org/content/early/2023/06/13/2023.06.12.544594}, eprint = {https://www.biorxiv.org/content/early/2023/06/13/2023.06.12.544594.full.pdf}, journal = {bioRxiv} } ```