Create handler.py
Browse files- handler.py +42 -0
handler.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import torch
|
3 |
+
from accelerate import Accelerator
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
def softmax(x):
|
9 |
+
z = x - max(x)
|
10 |
+
numerator = np.exp(z)
|
11 |
+
denominator = np.sum(numerator)
|
12 |
+
softmax = numerator/denominator
|
13 |
+
return softmax
|
14 |
+
|
15 |
+
class EndpointHandler():
|
16 |
+
def __init__(self, path=""):
|
17 |
+
self.accelerator = Accelerator()
|
18 |
+
self.device = self.accelerator.device
|
19 |
+
self.model = AutoModelForCausalLM.from_pretrained(path, trust_remote_code=True, device_map="auto")
|
20 |
+
self.model = self.accelerator.prepare(self.model)
|
21 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
22 |
+
self.options_tokens = [self.tokenizer.encode(choice)[-1] for choice in ["A", "B", "C", "D"]]
|
23 |
+
|
24 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
25 |
+
"""
|
26 |
+
data args:
|
27 |
+
inputs (:obj: `str` | `PIL.Image` | `np.array`)
|
28 |
+
kwargss
|
29 |
+
Return:
|
30 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
31 |
+
"""
|
32 |
+
with torch.no_grad():
|
33 |
+
prompt = data.pop("prompt")
|
34 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
35 |
+
input_size = inputs['input_ids'].size(1)
|
36 |
+
input_ids = inputs["input_ids"].to(self.device)
|
37 |
+
outputs = self.model(**inputs)
|
38 |
+
last_token_logits = outputs.logits[:, -1, :]
|
39 |
+
options_tokens_logits = last_token_logits[:, self.options_tokens].detach().cpu().numpy()
|
40 |
+
conf = softmax(options_tokens_logits[0])
|
41 |
+
pred = np.argmax(options_tokens_logits[0])
|
42 |
+
return [{"pred": pred, "conf":conf}]
|