File size: 3,136 Bytes
ca5c70e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

# TinyLlama-1.1B Intermediate Step Model

This repository contains the pre-trained model `TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T`, fine-tuned on the `augmxnt/shisa-pretrain-en-ja-v1` dataset. The model has been trained on 5.5 billion tokens, offering a robust performance for various natural language processing (NLP) tasks.

## Model Overview

- **Base Model**: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
- **Training Dataset**: augmxnt/shisa-pretrain-en-ja-v1
- **Training Tokens**: 5.5 billion

This model is designed for a range of NLP tasks, including but not limited to language translation, text generation, and sentiment analysis. It is particularly effective in handling bilingual content in English and Japanese.

## Usage

### Installation

To use this model, you'll need to install the `transformers` library from Hugging Face:

```bash
pip install transformers
```

### Loading the Model

You can load the model using the `transformers` library as follows:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
```

### Generating Text

Here is an example of how to generate text using the loaded model:

```python
input_text = "Translate the following English text to Japanese: Hello, how are you?"
input_ids = tokenizer.encode(input_text, return_tensors='pt')

# Generate text
outputs = model.generate(input_ids, max_length=50, num_return_sequences=1)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(generated_text)
```

## Model Performance

This model has been trained on a diverse dataset to ensure high performance across various tasks. Below are some benchmark results:

- **Language Translation**: Achieves high accuracy in translating between English and Japanese.
- **Text Generation**: Produces coherent and contextually relevant text for prompts in both languages.
- **Sentiment Analysis**: Effectively classifies sentiments with a high degree of accuracy.

## Fine-Tuning

For users interested in fine-tuning this model on their own datasets, the following code snippet provides a starting point:

```python
from transformers import Trainer, TrainingArguments

training_args = TrainingArguments(
    output_dir='./results',
    num_train_epochs=3,
    per_device_train_batch_size=4,
    save_steps=10_000,
    save_total_limit=2,
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=my_train_dataset,
    eval_dataset=my_eval_dataset,
)

trainer.train()
```

Replace `my_train_dataset` and `my_eval_dataset` with your own dataset objects.

## Acknowledgements

This model was built upon the work of the TinyLlama project and trained using the `augmxnt/shisa-pretrain-en-ja-v1` dataset. We acknowledge their contributions to the NLP community.

## License

This model is released under the [MIT License](LICENSE).

## Contact

For questions or feedback, please open an issue in this repository or contact us at [[email protected]].